Locking GTPases covalently in their functional states.

David Wiegandt, Sophie Vieweg, Frank Hofmann, Daniel Koch, Fu Li, Yao-Wen Wu, Aymelt Itzen, Matthias P Müller, Roger S Goody
Author Information
  1. David Wiegandt: Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
  2. Sophie Vieweg: Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
  3. Frank Hofmann: Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
  4. Daniel Koch: Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
  5. Fu Li: 1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany [2] Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany.
  6. Yao-Wen Wu: 1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany [2] Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany.
  7. Aymelt Itzen: Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany. ORCID
  8. Matthias P Müller: Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
  9. Roger S Goody: Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.

Abstract

GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

Associated Data

PDB | 4PHF; 4PHG; 4PHH

References

  1. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5621-6 [PMID: 22411835]
  2. Mol Cell. 2009 Dec 25;36(6):1060-72 [PMID: 20064470]
  3. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2572-7 [PMID: 24550285]
  4. EMBO J. 1986 Jun;5(6):1351-8 [PMID: 3015600]
  5. Eur Biophys J. 2002 Jul;31(4):268-74 [PMID: 12122473]
  6. Acta Crystallogr D Biol Crystallogr. 2004 Aug;60(Pt 8):1355-63 [PMID: 15272157]
  7. Eur J Biochem. 1999 Oct 1;265(1):160-70 [PMID: 10491170]
  8. Cell. 1986 Jan 17;44(1):167-76 [PMID: 3510078]
  9. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  10. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21348-53 [PMID: 23236136]
  11. Semin Cell Dev Biol. 2011 Feb;22(1):48-56 [PMID: 20951823]
  12. Biochem Biophys Res Commun. 2005 Mar 11;328(2):415-23 [PMID: 15694364]
  13. Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12294-9 [PMID: 17640890]
  14. J Cell Biol. 2013 Feb 4;200(3):287-300 [PMID: 23382462]
  15. Science. 2001 Nov 9;294(5545):1299-304 [PMID: 11701921]
  16. EMBO J. 2012 Apr 4;31(7):1774-84 [PMID: 22307087]
  17. Structure. 2002 Apr;10(4):569-79 [PMID: 11937061]
  18. J Cell Sci. 1992 Aug;102 ( Pt 4):857-65 [PMID: 1429897]
  19. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 [PMID: 15299926]
  20. J Cell Sci. 2004 Dec 15;117(Pt 26):6401-12 [PMID: 15561774]
  21. Mol Biol Cell. 2004 Dec;15(12):5420-30 [PMID: 15456905]
  22. J Biol Chem. 1996 Jun 14;271(24):14398-404 [PMID: 8662963]
  23. Nat Chem Biol. 2010 Jul;6(7):534-40 [PMID: 20512138]
  24. Science. 2003 Oct 24;302(5645):646-50 [PMID: 14576435]
  25. Nature. 2006 Jul 20;442(7100):303-6 [PMID: 16855591]
  26. J Cell Biol. 2014 Jun 9;205(5):707-20 [PMID: 24891604]
  27. J Biol Chem. 1990 Feb 5;265(4):2333-7 [PMID: 2105320]
  28. Histochem Cell Biol. 2010 Jan;133(1):41-55 [PMID: 19830447]
  29. J Biol Chem. 1993 Aug 25;268(24):18143-50 [PMID: 8349690]
  30. Elife. 2014;3:e01623 [PMID: 24520163]
  31. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2184-95 [PMID: 15572771]
  32. Biochemistry. 1990 Jun 26;29(25):6058-65 [PMID: 2200519]
  33. Nat Cell Biol. 1999 Jun;1(2):E25-7 [PMID: 10559887]
  34. Chembiochem. 2006 Dec;7(12):1859-61 [PMID: 17086561]
  35. Nature. 2012 Oct 18;490(7420):367-72 [PMID: 23000901]
  36. Biochemistry. 2010 Mar 9;49(9):1970-4 [PMID: 20131908]
  37. J Biol Chem. 2012 Oct 12;287(42):35036-46 [PMID: 22872634]
  38. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  39. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  40. Nature. 1991 Oct 24;353(6346):769-72 [PMID: 1944536]
  41. Biochem Soc Trans. 2005 Aug;33(Pt 4):652-6 [PMID: 16042566]
  42. Cell. 2004 Jun 11;117(6):749-60 [PMID: 15186776]
  43. Elife. 2014;3:e02171 [PMID: 24520166]
  44. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17945-50 [PMID: 22011575]
  45. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  46. EMBO J. 1994 Nov 15;13(22):5262-73 [PMID: 7957092]

MeSH Term

Binding Sites
Crystallography, X-Ray
Escherichia coli
Escherichia coli Proteins
Fungal Proteins
GTP Phosphohydrolases
Guanosine Diphosphate
Guanosine Triphosphate
Protein Binding
rab GTP-Binding Proteins

Chemicals

Escherichia coli Proteins
Fungal Proteins
Guanosine Diphosphate
Guanosine Triphosphate
GTP Phosphohydrolases
rab GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0statesproteinscovalentlyGTPasesmanyactiveinactiveGTPlockedactkeyregulatorscellularprocessesswitchingGTP-boundGDP-boundcasesunderstandingmodeactionaidedartificiallystabilizingoneeitherdesigningmutantcomplexationnon-hydrolysableanaloguesinherentdisadvantagesapproachesdevelopedacryl-bearingGDPderivativescanlinkedstrategicallyplacedcysteineswithinGTPaseinterestBindingstudiesGTPase-interactingX-raycrystallographyanalysisdemonstratemolecularpropertiescovalentGTPase-acryl-nucleotideadductsfaithfulreflectioncorrespondingnativeadvantageouslypermanentlydefinednucleotidestatefirstapplicationvivoexperimentsusingRab5variantsprovidenewinsightsmechanismcorrectintracellularlocalizationRabLockingfunctional

Similar Articles

Cited By (10)