Adaptation of a Bioinformatics Microarray Analysis Workflow for a Toxicogenomic Study in Rainbow Trout.

Sophie Depiereux, Bertrand De Meulder, Eric Bareke, Fabrice Berger, Florence Le Gac, Eric Depiereux, Patrick Kestemont
Author Information
  1. Sophie Depiereux: Unit of research in Environmental and Evolutionary Biology (URBE-NARILIS), Laboratory of Ecophysiology and Ecotoxicology, University of Namur, Namur, Belgium.
  2. Bertrand De Meulder: Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium.
  3. Eric Bareke: Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium; Sainte-Justine UHC Research Centre, University of Montreal, Montréal (Québec), H3T 1C5, Canada.
  4. Fabrice Berger: Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium.
  5. Florence Le Gac: Institut National de la Recherche Agronomique, INRA-LPGP, UPR1037, Campus de Beaulieu, 35042, Rennes, France.
  6. Eric Depiereux: Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium.
  7. Patrick Kestemont: Unit of research in Environmental and Evolutionary Biology (URBE-NARILIS), Laboratory of Ecophysiology and Ecotoxicology, University of Namur, Namur, Belgium.

Abstract

Sex steroids play a key role in triggering sex differentiation in fish, the use of exogenous hormone treatment leading to partial or complete sex reversal. This phenomenon has attracted attention since the discovery that even low environmental doses of exogenous steroids can adversely affect gonad morphology (ovotestis development) and induce reproductive failure. Modern genomic-based technologies have enhanced opportunities to find out mechanisms of actions (MOA) and identify biomarkers related to the toxic action of a compound. However, high throughput data interpretation relies on statistical analysis, species genomic resources, and bioinformatics tools. The goals of this study are to improve the knowledge of feminisation in fish, by the analysis of molecular responses in the gonads of rainbow trout fry after chronic exposure to several doses (0.01, 0.1, 1 and 10 μg/L) of ethynylestradiol (EE2) and to offer target genes as potential biomarkers of ovotestis development. We successfully adapted a bioinformatics microarray analysis workflow elaborated on human data to a toxicogenomic study using rainbow trout, a fish species lacking accurate functional annotation and genomic resources. The workflow allowed to obtain lists of genes supposed to be enriched in true positive differentially expressed genes (DEGs), which were subjected to over-representation analysis methods (ORA). Several pathways and ontologies, mostly related to cell division and metabolism, sexual reproduction and steroid production, were found significantly enriched in our analyses. Moreover, two sets of potential ovotestis biomarkers were selected using several criteria. The first group displayed specific potential biomarkers belonging to pathways/ontologies highlighted in the experiment. Among them, the early ovarian differentiation gene foxl2a was overexpressed. The second group, which was highly sensitive but not specific, included the DEGs presenting the highest fold change and lowest p-value of the statistical workflow output. The methodology can be generalized to other (non-model) species and various types of microarray platforms.

Associated Data

GEO | GSE58519

References

  1. Mol Biosyst. 2007 Mar;3(3):172-7 [PMID: 17308663]
  2. Bioinformatics. 2006 Apr 1;22(7):789-94 [PMID: 16410320]
  3. Nucleic Acids Res. 2013 Jan;41(Database issue):D43-7 [PMID: 23161681]
  4. Reprod Toxicol. 2005 Sep-Oct;20(3):433-40 [PMID: 15964738]
  5. Curr Biol. 2012 Aug 7;22(15):1423-8 [PMID: 22727696]
  6. BMC Bioinformatics. 2007 May 01;8:142 [PMID: 17472750]
  7. Bioinformatics. 2003 Jan 22;19(2):185-93 [PMID: 12538238]
  8. Environ Toxicol Chem. 2001 Dec;20(12):2841-7 [PMID: 11764169]
  9. BMC Genomics. 2007 Oct 04;8:357 [PMID: 17916255]
  10. Toxicology. 2005 Oct 1;213(3):177-93 [PMID: 15996808]
  11. PLoS One. 2014 Jan 31;9(1):e86699 [PMID: 24497970]
  12. PLoS One. 2013;8(1):e53302 [PMID: 23301058]
  13. Aquat Toxicol. 2010 Jul 1;98(3):230-244 [PMID: 20359757]
  14. Sci Total Environ. 2002 Jul 3;293(1-3):69-83 [PMID: 12109482]
  15. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  16. Crit Rev Toxicol. 2002;32(6):445-520 [PMID: 12487363]
  17. Anal Biochem. 2000 Oct 15;285(2):194-204 [PMID: 11017702]
  18. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  19. BMC Bioinformatics. 2010 Jan 11;11:17 [PMID: 20064233]
  20. Arch Environ Contam Toxicol. 2011 Apr;60(3):471-8 [PMID: 20523976]
  21. EHP Toxicogenomics. 2003 Jan;111(1T):29-36 [PMID: 12735107]
  22. Dev Dyn. 2007 Aug;236(8):2198-206 [PMID: 17584856]
  23. Bioinformatics. 2003 Feb 12;19(3):368-75 [PMID: 12584122]
  24. Environ Toxicol Chem. 2008 Mar;27(3):664-75 [PMID: 17990946]
  25. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  26. BMC Res Notes. 2011 Oct 27;4:452 [PMID: 22032859]
  27. Bioinformatics. 2004 Mar 1;20(4):578-80 [PMID: 14990455]
  28. BMC Cancer. 2010 Apr 30;10:176 [PMID: 20433688]
  29. Chemosphere. 2012 May;87(7):668-74 [PMID: 22230730]
  30. Bioinformatics. 2004 Nov 22;20(17):3246-8 [PMID: 15180930]
  31. BMC Syst Biol. 2011;5 Suppl 2:S6 [PMID: 22784577]
  32. Genome Biol. 2003;4(5):P3 [PMID: 12734009]
  33. J Mol Endocrinol. 2008 Nov;41(5):277-88 [PMID: 18719050]
  34. Nat Genet. 2002 May;31(1):19-20 [PMID: 11984561]
  35. BMC Bioinformatics. 2010 Oct 13;11:510 [PMID: 20942918]
  36. Aquat Toxicol. 2006 Sep 12;79(3):233-46 [PMID: 16872691]
  37. Ecotoxicology. 2003 Dec;12(6):463-8 [PMID: 14680325]
  38. Bioinformatics. 2002 Jan;18(1):207-8 [PMID: 11836235]
  39. Environ Health Perspect. 2011 Mar;119(3):306-11 [PMID: 21362587]
  40. Physiol Genomics. 2003 Oct 17;15(2):127-41 [PMID: 12915738]
  41. Toxicol Sci. 2006 Mar;90(1):61-72 [PMID: 16192472]
  42. PLoS One. 2014 Jul 17;9(7):e98531 [PMID: 25033040]
  43. Aquat Toxicol. 2006 May 25;77(4):372-85 [PMID: 16488489]
  44. Bioinformatics. 2004 Feb 12;20(3):323-31 [PMID: 14960458]
  45. Genome Biol. 2003;4(4):R28 [PMID: 12702209]
  46. Aquat Toxicol. 2007 Feb 28;81(2):219-31 [PMID: 17222921]
  47. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 [PMID: 9843981]
  48. Bioinformatics. 2001 Jun;17(6):509-19 [PMID: 11395427]
  49. Genome Biol. 2003;4(10):R70 [PMID: 14519205]
  50. Aquat Toxicol. 2009 May 5;92(3):168-78 [PMID: 19261338]
  51. Nucleic Acids Res. 2012 Jan;40(Database issue):D84-90 [PMID: 22086963]
  52. Aquat Toxicol. 2007 Aug 15;84(1):38-49 [PMID: 17606305]
  53. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  54. Stat Appl Genet Mol Biol. 2007;6:Article9 [PMID: 17402924]
  55. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  56. Stat Appl Genet Mol Biol. 2008;7(1):Article22 [PMID: 18673291]
  57. Toxicol Sci. 2005 May;85(1):683-93 [PMID: 15716485]
  58. Toxicol Sci. 2006 Oct;93(2):298-310 [PMID: 16835292]
  59. Biochem Biophys Res Commun. 2004 Jul 30;320(3):745-53 [PMID: 15240111]

MeSH Term

Animals
Biomarkers
Computational Biology
Dose-Response Relationship, Drug
Estrogens
Ethinyl Estradiol
Female
Fish Proteins
Forkhead Transcription Factors
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gonads
Male
Metabolic Networks and Pathways
Microarray Analysis
Molecular Sequence Annotation
Oncorhynchus mykiss
Sex Determination Processes

Chemicals

Biomarkers
Estrogens
Fish Proteins
Forkhead Transcription Factors
Ethinyl Estradiol

Word Cloud

Created with Highcharts 10.0.0biomarkersanalysisfishovotestisspeciesgenespotentialworkflowsteroidssexdifferentiationexogenousdosescandevelopmentrelateddatastatisticalgenomicresourcesbioinformaticsstudyrainbowtroutseveral01microarrayusingenrichedDEGsgroupspecificSexplaykeyroletriggeringusehormonetreatmentleadingpartialcompletereversalphenomenonattractedattentionsincediscoveryevenlowenvironmentaladverselyaffectgonadmorphologyinducereproductivefailureModerngenomic-basedtechnologiesenhancedopportunitiesfindmechanismsactionsMOAidentifytoxicactioncompoundHoweverhighthroughputinterpretationreliestoolsgoalsimproveknowledgefeminisationmolecularresponsesgonadsfrychronicexposure0110μg/LethynylestradiolEE2offertargetsuccessfullyadaptedelaboratedhumantoxicogenomiclackingaccuratefunctionalannotationallowedobtainlistssupposedtruepositivedifferentiallyexpressedsubjectedover-representationmethodsORASeveralpathwaysontologiesmostlycelldivisionmetabolismsexualreproductionsteroidproductionfoundsignificantlyanalysesMoreovertwosetsselectedcriteriafirstdisplayedbelongingpathways/ontologieshighlightedexperimentAmongearlyovariangenefoxl2aoverexpressedsecondhighlysensitiveincludedpresentinghighestfoldchangelowestp-valueoutputmethodologygeneralizednon-modelvarioustypesplatformsAdaptationBioinformaticsMicroarrayAnalysisWorkflowToxicogenomicStudyRainbowTrout

Similar Articles

Cited By