Temporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus Macaques.

Kenny L Lin, Nancy A Twenhafel, John H Connor, Kathleen A Cashman, Joshua D Shamblin, Ginger C Donnelly, Heather L Esham, Carly B Wlazlowski, Joshua C Johnson, Anna N Honko, Miriam A Botto, Judy Yen, Lisa E Hensley, Arthur J Goff
Author Information
  1. Kenny L Lin: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  2. Nancy A Twenhafel: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  3. John H Connor: Boston University School of Medicine and National Emerging Infectious Diseases Laboratory, Boston, Massachusetts, USA.
  4. Kathleen A Cashman: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  5. Joshua D Shamblin: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  6. Ginger C Donnelly: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  7. Heather L Esham: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  8. Carly B Wlazlowski: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  9. Joshua C Johnson: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, Maryland, USA.
  10. Anna N Honko: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, Maryland, USA.
  11. Miriam A Botto: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
  12. Judy Yen: Boston University School of Medicine and National Emerging Infectious Diseases Laboratory, Boston, Massachusetts, USA.
  13. Lisa E Hensley: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, Maryland, USA.
  14. Arthur J Goff: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA arthur.j.goff.civ@mail.mil.

Abstract

Marburg virus (MARV) infection is a lethal hemorrhagic fever for which no licensed vaccines or therapeutics are available. Development of appropriate medical countermeasures requires a thorough understanding of the interaction between the host and the pathogen and the resulting disease course. In this study, 15 rhesus macaques were sequentially sacrificed following aerosol exposure to the MARV variant Angola, with longitudinal changes in physiology, immunology, and histopathology used to assess disease progression. Immunohistochemical evidence of infection and resulting histopathological changes were identified as early as day 3 postexposure (p.e.). The appearance of fever in infected animals coincided with the detection of serum viremia and plasma viral genomes on day 4 p.e. High (>10(7) PFU/ml) viral loads were detected in all major organs (lung, liver, spleen, kidney, brain, etc.) beginning day 6 p.e. Clinical pathology findings included coagulopathy, leukocytosis, and profound liver destruction as indicated by elevated liver transaminases, azotemia, and hypoalbuminemia. Altered cytokine expression in response to infection included early increases in Th2 cytokines such as interleukin 10 (IL-10) and IL-5 and late-stage increases in Th1 cytokines such as IL-2, IL-15, and granulocyte-macrophage colony-stimulating factor (GM-CSF). This study provides a longitudinal examination of clinical disease of aerosol MARV Angola infection in the rhesus macaque model.
IMPORTANCE: In this study, we carefully analyzed the timeline of Marburg virus infection in nonhuman primates in order to provide a well-characterized model of disease progression following aerosol exposure.

References

  1. Biosecur Bioterror. 2011 Dec;9(4):361-71 [PMID: 22070137]
  2. Future Virol. 2011 Sep;6(9):1091-1106 [PMID: 22046196]
  3. Trans R Soc Trop Med Hyg. 1969;63(3):303-9 [PMID: 4978540]
  4. N Engl J Med. 2006 Aug 31;355(9):909-19 [PMID: 16943403]
  5. J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81 [PMID: 17940973]
  6. Nat Rev Immunol. 2007 Jul;7(7):556-67 [PMID: 17589545]
  7. Sci Rep. 2012;2:811 [PMID: 23155478]
  8. Arch Virol Suppl. 2008;20:13-360 [PMID: 18637412]
  9. Antiviral Res. 2008 Apr;78(1):150-61 [PMID: 18336927]
  10. Semin Pediatr Infect Dis. 2005 Jul;16(3):219-24 [PMID: 16044395]
  11. Lancet Infect Dis. 2012 Aug;12(8):635-42 [PMID: 22394985]
  12. J Virol. 2015 Oct;89(19):9865-74 [PMID: 26202234]
  13. Am J Trop Med Hyg. 2010 May;82(5):954-60 [PMID: 20439981]
  14. J Infect Dis. 2007 Nov 15;196 Suppl 2:S131-5 [PMID: 17940940]
  15. J Immunol. 2000 Jan 1;164(1):371-8 [PMID: 10605032]
  16. J Infect Dis. 2011 Nov;204 Suppl 3:S1021-31 [PMID: 21987738]
  17. Viruses. 2012 Oct;4(10):1878-927 [PMID: 23202446]
  18. J Appl Microbiol. 2010 Nov;109(5):1531-9 [PMID: 20553340]
  19. Dis Model Mech. 2009 Jan-Feb;2(1-2):12-7 [PMID: 19132113]
  20. Clin Lab Med. 2010 Mar;30(1):161-77 [PMID: 20513546]
  21. Vet Pathol. 2010 Sep;47(5):831-51 [PMID: 20807825]
  22. J Virol. 2009 Jul;83(14):7244-51 [PMID: 19420081]
  23. Clin Exp Immunol. 2004 Oct;138(1):110-5 [PMID: 15373912]
  24. J Infect Dis. 2011 Nov;204 Suppl 3:S810-6 [PMID: 21987756]
  25. J Virol. 1996 Oct;70(10):7103-7 [PMID: 8794356]
  26. J Virol. 2006 Jul;80(13):6497-516 [PMID: 16775337]
  27. Rev Infect Dis. 1989 May-Jun;11 Suppl 4:S730-5 [PMID: 2546247]
  28. Lab Invest. 1971 Apr;24(4):279-91 [PMID: 4997371]
  29. Ger Med Mon. 1969 Jan;14(1):7-10 [PMID: 5352745]
  30. Fed Regist. 2002 May 31;67(105):37988-98 [PMID: 12049094]
  31. J Virol. 2006 Oct;80(19):9659-66 [PMID: 16973570]
  32. Front Microbiol. 2013 Sep 05;4:267 [PMID: 24046765]

Grants

  1. R01 AI096159/NIAID NIH HHS

MeSH Term

Aerosols
Animals
Cytokines
Disease Progression
Host-Pathogen Interactions
Immunohistochemistry
Longitudinal Studies
Macaca mulatta
Marburg Virus Disease
Marburgvirus
Time Factors
Viral Load

Chemicals

Aerosols
Cytokines

Word Cloud

Created with Highcharts 10.0.0infectiondiseaseMarburgMARVstudyfollowingaerosolAngoladaypelivervirusfeverresultingrhesusexposurelongitudinalchangesprogressionearlyviralincludedincreasescytokinesmodellethalhemorrhagiclicensedvaccinestherapeuticsavailableDevelopmentappropriatemedicalcountermeasuresrequiresthoroughunderstandinginteractionhostpathogencourse15macaquessequentiallysacrificedvariantphysiologyimmunologyhistopathologyusedassessImmunohistochemicalevidencehistopathologicalidentified3postexposureappearanceinfectedanimalscoincideddetectionserumviremiaplasmagenomes4High>107PFU/mlloadsdetectedmajororganslungspleenkidneybrainetcbeginning6ClinicalpathologyfindingscoagulopathyleukocytosisprofounddestructionindicatedelevatedtransaminasesazotemiahypoalbuminemiaAlteredcytokineexpressionresponseTh2interleukin10IL-10IL-5late-stageTh1IL-2IL-15granulocyte-macrophagecolony-stimulatingfactorGM-CSFprovidesexaminationclinicalmacaqueIMPORTANCE:carefullyanalyzedtimelinenonhumanprimatesorderprovidewell-characterizedTemporalCharacterizationVirusInfectionAerosolChallengeRhesusMacaques

Similar Articles

Cited By (21)