Glyconanomaterials for biosensing applications.

Nanjing Hao, Kitjanit Neranon, Olof Ramström, Mingdi Yan
Author Information
  1. Nanjing Hao: Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
  2. Kitjanit Neranon: Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
  3. Olof Ramström: Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden. Electronic address: ramstrom@kth.se.
  4. Mingdi Yan: Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden. Electronic address: mingdi_yan@uml.edu.

Abstract

Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.

Keywords

References

  1. Science. 2005 Jan 28;307(5709):538-44 [PMID: 15681376]
  2. Analyst. 2008 May;133(5):626-34 [PMID: 18427684]
  3. Org Biomol Chem. 2008 Apr 21;6(8):1425-34 [PMID: 18385849]
  4. J Med Chem. 2004 Dec 16;47(26):6499-508 [PMID: 15588085]
  5. Langmuir. 2014 Jul 1;30(25):7377-87 [PMID: 24885262]
  6. Anal Chem. 2008 Feb 15;80(4):1033-8 [PMID: 18198893]
  7. Nat Biotechnol. 2004 Aug;22(8):977-84 [PMID: 15258595]
  8. Chembiochem. 2004 Apr 2;5(4):445-52 [PMID: 15185367]
  9. Chem Soc Rev. 2005 May;34(5):429-39 [PMID: 15852155]
  10. Chembiochem. 2008 May 5;9(7):1100-9 [PMID: 18398881]
  11. J Am Chem Soc. 2010 Mar 31;132(12):4490-9 [PMID: 20201530]
  12. Nano Lett. 2010 Sep 8;10(9):3754-6 [PMID: 20690657]
  13. ACS Chem Neurosci. 2013 Apr 17;4(4):575-84 [PMID: 23590250]
  14. Org Lett. 2007 May 24;9(11):2131-4 [PMID: 17477538]
  15. Eur Radiol. 2001;11(11):2319-31 [PMID: 11702180]
  16. Acc Chem Res. 2013 Mar 19;46(3):702-13 [PMID: 22999420]
  17. Biosens Bioelectron. 2011 Jul 15;26(11):4497-502 [PMID: 21621405]
  18. Int Immunopharmacol. 2009 Jun;9(6):792-9 [PMID: 19303462]
  19. Antimicrob Agents Chemother. 2003 Dec;47(12):3970-2 [PMID: 14638512]
  20. Chem Commun (Camb). 2005 Sep 14;(34):4273-5 [PMID: 16113719]
  21. Nat Rev Microbiol. 2005 Mar;3(3):225-37 [PMID: 15738950]
  22. ACS Appl Mater Interfaces. 2012 Jan;4(1):411-7 [PMID: 22148732]
  23. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):18-23 [PMID: 19106304]
  24. Anal Chem. 2012 May 15;84(10):4248-52 [PMID: 22548468]
  25. J Nanosci Nanotechnol. 2008 Oct;8(10):5196-202 [PMID: 19198420]
  26. Adv Mater. 2010 May 4;22(17):1946-53 [PMID: 20301131]
  27. Acc Chem Res. 2010 Nov 16;43(11):1434-43 [PMID: 20690606]
  28. Biomacromolecules. 2013 Feb 11;14(2):431-7 [PMID: 23281578]
  29. Nat Rev Drug Discov. 2005 Jun;4(6):477-88 [PMID: 15931257]
  30. Int J Pharm. 2010 Dec 15;402(1-2):221-30 [PMID: 20934496]
  31. Talanta. 2007 Feb 15;71(2):833-40 [PMID: 19071382]
  32. J Antimicrob Chemother. 2007 Sep;60(3):495-501 [PMID: 17623698]
  33. Angew Chem Int Ed Engl. 2004 Nov 19;43(45):6111-6 [PMID: 15549753]
  34. Biosens Bioelectron. 2010 Dec 15;26(4):1326-31 [PMID: 20685103]
  35. Chem Commun (Camb). 2013 Apr 14;49(29):3004-6 [PMID: 23459764]
  36. Bioconjug Chem. 2010 Nov 17;21(11):2128-35 [PMID: 20977242]
  37. J Biomed Mater Res A. 2006 Mar 1;76(3):614-25 [PMID: 16315191]
  38. J Fluoresc. 2010 Mar;20(2):591-7 [PMID: 20058182]
  39. Chembiochem. 2002 Sep 2;3(9):836-44 [PMID: 12210984]
  40. Bioconjug Chem. 2005 Jan-Feb;16(1):90-6 [PMID: 15656579]
  41. Adv Carbohydr Chem Biochem. 2010;63:165-393 [PMID: 20381707]
  42. Anal Chem. 2007 Dec 1;79(23):8979-86 [PMID: 17973352]
  43. Bioconjug Chem. 2014 Apr 16;25(4):640-3 [PMID: 24625204]
  44. Chem Commun (Camb). 2015 Feb 18;51(14):2882-5 [PMID: 25582387]
  45. Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2335-9 [PMID: 23345258]
  46. Biomacromolecules. 2012 May 14;13(5):1675-82 [PMID: 22519294]
  47. J Am Chem Soc. 2009 Nov 25;131(46):16608-9 [PMID: 19873969]
  48. J Control Release. 2008 Jan 22;125(2):131-6 [PMID: 18045722]
  49. Bioorg Med Chem. 2010 Jul 15;18(14):5234-40 [PMID: 20566293]
  50. Chem Commun (Camb). 2011 Aug 14;47(30):8620-2 [PMID: 21720651]
  51. Bioconjug Chem. 2010 Aug 18;21(8):1486-93 [PMID: 20669970]
  52. Biosens Bioelectron. 2014 May 15;55:157-61 [PMID: 24373955]
  53. J Biomed Nanotechnol. 2014 Oct;10(10):2508-38 [PMID: 25992407]
  54. Langmuir. 2009 Jul 7;25(13):7432-7 [PMID: 19563228]
  55. Pharm Res. 2014 Jun;31(6):1426-37 [PMID: 23568520]
  56. Biosens Bioelectron. 2013 Dec 15;50:305-10 [PMID: 23876541]
  57. Biosens Bioelectron. 2011 Jan 15;26(5):2500-5 [PMID: 21112760]
  58. Small. 2014 Jul 9;10(13):2602-10 [PMID: 24639360]
  59. J Am Chem Soc. 2009 Dec 16;131(49):17765-7 [PMID: 19919053]
  60. Macromol Biosci. 2006 Jul 14;6(7):506-16 [PMID: 16921538]
  61. Nat Biotechnol. 2004 Jan;22(1):47-52 [PMID: 14704706]
  62. Chembiochem. 2008 Oct 13;9(15):2433-42 [PMID: 18803208]
  63. Chem Commun (Camb). 2003 Aug 7;(15):1966-7 [PMID: 12932056]
  64. ACS Nano. 2010 Jun 22;4(6):3005-14 [PMID: 20518553]
  65. Biosens Bioelectron. 2013 Sep 15;47:258-64 [PMID: 23584388]
  66. Angew Chem Int Ed Engl. 2001 Jun 18;40(12):2257-2261 [PMID: 11433487]
  67. Chembiochem. 2007 Mar 5;8(4):379-84 [PMID: 17243188]
  68. Chem Soc Rev. 2013 Jun 7;42(11):4532-42 [PMID: 23247183]
  69. Angew Chem Int Ed Engl. 2007;46(46):8799-803 [PMID: 17943938]
  70. Anal Chem. 2012 Apr 3;84(7):3049-52 [PMID: 22385080]
  71. Biomed Opt Express. 2011 Apr 18;2(5):1243-57 [PMID: 21559135]
  72. RSC Adv. 2011 Oct 7;1(8):1449-1452 [PMID: 22662307]
  73. Biosens Bioelectron. 2012 Apr 15;34(1):202-7 [PMID: 22387041]
  74. Chem Rev. 1999 Jul 14;99(7):1665-1688 [PMID: 11849007]
  75. Langmuir. 2014 Jan 14;30(1):234-42 [PMID: 24313322]
  76. Chem Soc Rev. 2009 Dec;38(12):3463-83 [PMID: 20449063]
  77. Chem Soc Rev. 2013 May 21;42(10):4358-76 [PMID: 23303404]
  78. Chem Soc Rev. 2004 Jan 10;33(1):43-63 [PMID: 14737508]
  79. ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1874-8 [PMID: 25531131]
  80. ACS Nano. 2008 Sep 23;2(9):1777-88 [PMID: 19206416]
  81. Chem Soc Rev. 2013 Jun 7;42(11):4709-27 [PMID: 23254759]
  82. Anal Chem. 2005 Nov 1;77(21):7039-46 [PMID: 16255607]
  83. Chem Soc Rev. 2013 Jun 7;42(11):4728-45 [PMID: 23288339]
  84. IEEE Trans Nanobioscience. 2007 Dec;6(4):275-81 [PMID: 18217620]
  85. Chem Commun (Camb). 2009 Jul 21;(27):4121-3 [PMID: 19568653]
  86. Chemistry. 2009;15(7):1649-60 [PMID: 19115306]
  87. Int Immunopharmacol. 2011 Aug;11(8):955-61 [PMID: 21349367]
  88. Anal Chem. 2010 Nov 1;82(21):9082-9 [PMID: 20942402]
  89. Immunol Cell Biol. 2005 Dec;83(6):694-708 [PMID: 16266322]
  90. Am J Hematol. 2010 May;85(5):315-9 [PMID: 20201089]
  91. Anal Chem. 2013 Nov 5;85(21):10277-81 [PMID: 24079754]
  92. Org Biomol Chem. 2010 May 21;8(10):2425-9 [PMID: 20448902]
  93. Chem Soc Rev. 2013 Jun 7;42(11):4640-56 [PMID: 23487184]
  94. Bioconjug Chem. 2012 Jun 20;23(6):1166-73 [PMID: 22551003]
  95. Exp Biol Med (Maywood). 2009 Oct;234(10):1128-39 [PMID: 19596820]
  96. J Mater Chem B. 2014 Jun 7;2(21):3324-3332 [PMID: 32261595]
  97. Nanotechnology. 2009 Nov 11;20(45):455104 [PMID: 19822927]
  98. Analyst. 2011 Oct 21;136(20):4174-8 [PMID: 21858301]
  99. Chem Commun (Camb). 2003 Dec 7;(23):2920-1 [PMID: 14680241]
  100. J Am Chem Soc. 2011 Sep 7;133(35):13957-66 [PMID: 21790192]
  101. J Colloid Interface Sci. 2011 Feb 1;354(1):160-7 [PMID: 21044787]
  102. Adv Mater. 2008 Nov 3;20(21):4154-4157 [PMID: 19606262]
  103. Chem Commun (Camb). 2015 Jun 18;51(48):9833-6 [PMID: 25989158]
  104. J Am Chem Soc. 2015 Mar 18;137(10):3686-92 [PMID: 25706836]
  105. Angew Chem Int Ed Engl. 2008;47(27):5022-5 [PMID: 18509843]
  106. Chemistry. 2012 Apr 2;18(14):4264-73 [PMID: 22362615]
  107. Adv Healthc Mater. 2012 May;1(3):302-7 [PMID: 23184744]
  108. Chembiochem. 2005 Jul;6(7):1169-73 [PMID: 15942924]
  109. Bioconjug Chem. 2011 Feb 16;22(2):264-73 [PMID: 21247095]
  110. J Am Chem Soc. 2005 Apr 20;127(15):5304-5 [PMID: 15826152]
  111. Anal Chem. 2009 Feb 1;81(3):875-82 [PMID: 19119843]
  112. Carbohydr Res. 2015 Mar 20;405:33-8 [PMID: 25746392]
  113. Carbohydr Res. 2008 Jul 21;343(10-11):1594-604 [PMID: 18502409]
  114. Nanomedicine (Lond). 2010 Jul;5(5):777-92 [PMID: 20662648]
  115. J Am Chem Soc. 2006 Oct 18;128(41):13364-5 [PMID: 17031942]
  116. Biomaterials. 2011 Dec;32(36):9818-25 [PMID: 21940045]
  117. Biomacromolecules. 2012 Apr 9;13(4):1144-51 [PMID: 22372739]
  118. Pharm Res. 2012 Aug;29(8):2167-79 [PMID: 22477071]
  119. J Fluoresc. 2004 Jul;14(4):391-400 [PMID: 15617381]
  120. J Biomed Biotechnol. 2007;2007(10):94740 [PMID: 18317519]
  121. J Am Chem Soc. 2007 Nov 7;129(44):13392-3 [PMID: 17929928]
  122. Stem Cell Res. 2015 Jan;14(1):114-29 [PMID: 25564310]
  123. Chemistry. 2012 May 21;18(21):6485-92 [PMID: 22528128]
  124. Bioconjug Chem. 2007 May-Jun;18(3):635-44 [PMID: 17370996]
  125. Chemistry. 2011 Jan 17;17(3):766-9 [PMID: 21226088]
  126. Chem Commun (Camb). 2009 Jan 8;(2):235-7 [PMID: 19099080]
  127. Analyst. 2013 Feb 21;138(3):805-12 [PMID: 23223216]
  128. Biochem Biophys Res Commun. 2010 Mar 26;394(1):200-4 [PMID: 20188703]
  129. Chem Commun (Camb). 2004 Oct 7;(19):2150-1 [PMID: 15467846]
  130. Biochem Biophys Res Commun. 2009 Nov 6;389(1):22-7 [PMID: 19698698]
  131. Chembiochem. 2008 Nov 3;9(16):2623-7 [PMID: 18821556]
  132. J Am Chem Soc. 2011 Aug 17;133(32):12507-17 [PMID: 21740000]
  133. Curr Med Chem. 2013 Feb 1;20(6):782-8 [PMID: 23276135]
  134. Angew Chem Int Ed Engl. 2011 Nov 25;50(48):11425-9 [PMID: 21976357]
  135. Carbohydr Res. 2015 Mar 20;405:2-12 [PMID: 25498197]
  136. Biomacromolecules. 2011 Oct 10;12(10):3805-11 [PMID: 21875143]
  137. ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1040-5 [PMID: 25562524]
  138. Langmuir. 2010 Feb 2;26(3):1520-3 [PMID: 20099915]
  139. J Colloid Interface Sci. 2002 May 15;249(2):274-81 [PMID: 16290597]
  140. Chem Commun (Camb). 2013 Apr 14;49(29):3034-6 [PMID: 23463337]
  141. Chem Commun (Camb). 2011 Apr 14;47(14):4261-3 [PMID: 21380421]
  142. Chembiochem. 2004 Mar 5;5(3):291-7 [PMID: 14997521]
  143. Biomaterials. 2011 Apr;32(10):2540-5 [PMID: 21232787]
  144. Nat Rev Drug Discov. 2009 Aug;8(8):661-77 [PMID: 19629075]
  145. Chem Rev. 2010 Apr 14;110(4):1857-959 [PMID: 20356105]
  146. Bioconjug Chem. 2010 Mar 17;21(3):521-30 [PMID: 20128624]
  147. J Am Chem Soc. 2009 Feb 18;131(6):2110-2 [PMID: 19199612]
  148. Chem Commun (Camb). 2007 Aug 21;(31):3236-45 [PMID: 17668088]
  149. Carbohydr Res. 2009 Aug 17;344(12):1474-8 [PMID: 19501815]
  150. Chem Soc Rev. 2010 Aug;39(8):2925-34 [PMID: 20585681]
  151. Chirality. 2008 Mar;20(3-4):265-77 [PMID: 17568438]
  152. J Am Chem Soc. 2014 Jan 8;136(1):449-57 [PMID: 24320878]
  153. J Am Chem Soc. 2013 Apr 24;135(16):5966-9 [PMID: 23565759]
  154. Sci Lett J. 2015;4: [PMID: 27077134]
  155. Chem Commun (Camb). 2010 Aug 14;46(30):5491-3 [PMID: 20458389]
  156. Chemistry. 2015 Mar 2;21(10):3956-67 [PMID: 25571858]
  157. ACS Chem Biol. 2014 Feb 21;9(2):383-9 [PMID: 24304188]
  158. Curr Med Chem. 2011;18(14):2060-78 [PMID: 21517769]
  159. J Org Chem. 2001 Nov 16;66(23):7786-95 [PMID: 11701037]
  160. Macromol Biosci. 2013 Jan;13(1):9-27 [PMID: 23042762]
  161. Langmuir. 2008 May 20;24(10):5319-23 [PMID: 18433181]
  162. Biomacromolecules. 2008 Sep;9(9):2408-18 [PMID: 18712920]
  163. Chem Rev. 2012 May 9;112(5):2739-79 [PMID: 22295941]
  164. Science. 1997 May 2;276(5313):718-25 [PMID: 9115192]
  165. Bioconjug Chem. 2007 Jan-Feb;18(1):146-51 [PMID: 17226967]
  166. Chem Commun (Camb). 2009 Jul 14;(26):3922-4 [PMID: 19662253]
  167. Chem Commun (Camb). 2012 Apr 7;48(28):3385-7 [PMID: 22245910]
  168. Acc Chem Res. 2013 Jan 15;46(1):181-9 [PMID: 23116448]
  169. Angew Chem Int Ed Engl. 2006 Apr 3;45(15):2348-68 [PMID: 16557636]
  170. J Am Chem Soc. 2010 Aug 4;132(30):10230-2 [PMID: 20662498]
  171. Bioconjug Chem. 2009 Jul;20(7):1349-55 [PMID: 19534519]
  172. J Am Chem Soc. 2003 Jul 16;125(28):8566-80 [PMID: 12848565]
  173. Bioorg Med Chem Lett. 2001 Nov 19;11(22):2935-9 [PMID: 11677130]
  174. J Mater Chem. 2009 Dec 21;19(47):8944-8949 [PMID: 20856694]
  175. Org Biomol Chem. 2008 Dec 7;6(23):4290-2 [PMID: 19005585]
  176. Langmuir. 2013 Jan 29;29(4):1318-26 [PMID: 23286545]
  177. Nanomedicine. 2007 Jun;3(2):132-7 [PMID: 17572355]
  178. J Am Chem Soc. 2006 May 17;128(19):6292-3 [PMID: 16683774]
  179. Biomacromolecules. 2015 Apr 13;16(4):1426-32 [PMID: 25738860]
  180. Biomaterials. 2008 Dec;29(35):4709-18 [PMID: 18817971]
  181. Anal Chem. 2007 Sep 15;79(18):6959-64 [PMID: 17658764]
  182. Nano Lett. 2014;14(4):2130-4 [PMID: 24564342]
  183. J Am Chem Soc. 2003 Dec 24;125(51):15702-3 [PMID: 14677934]
  184. Chem Commun (Camb). 2005 Feb 21;(7):874-6 [PMID: 15700066]
  185. Nat Rev Cancer. 2005 Jan;5(1):29-41 [PMID: 15630413]
  186. ACS Appl Mater Interfaces. 2014 Aug 13;6(15):13234-41 [PMID: 25014128]
  187. Chem Commun (Camb). 2008 May 14;(18):2127-9 [PMID: 18438490]
  188. Org Biomol Chem. 2013 Nov 7;11(41):7101-7 [PMID: 24057694]
  189. Chem Commun (Camb). 2015 Aug 4;51(60):12028-31 [PMID: 26121049]
  190. Biosci Biotechnol Biochem. 2005 Jan;69(1):166-78 [PMID: 15665482]
  191. J Mater Chem. 2010 Jun 28;20(24):5041-5046 [PMID: 24155570]
  192. Nat Mater. 2010 Jun;9(6):485-90 [PMID: 20473287]
  193. Chem Commun (Camb). 2008 Oct 21;(39):4771-3 [PMID: 18830488]
  194. Angew Chem Int Ed Engl. 2009;48(15):2723-6 [PMID: 19263455]
  195. ACS Macro Lett. 2014 Oct 21;3(10):1074-1078 [PMID: 35610795]
  196. ACS Appl Mater Interfaces. 2009 Feb;1(2):328-35 [PMID: 20353220]
  197. Nat Rev Immunol. 2007 Apr;7(4):255-66 [PMID: 17380156]
  198. ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7384-91 [PMID: 23815685]
  199. ACS Nano. 2009 Jun 23;3(6):1389-98 [PMID: 19476339]
  200. Angew Chem Int Ed Engl. 2006 Sep 18;45(37):6207-10 [PMID: 16906617]
  201. Chem Commun (Camb). 2010 Apr 14;46(14):2441-3 [PMID: 20379552]
  202. Anal Chem. 2011 Sep 15;83(18):7006-12 [PMID: 21809847]
  203. Anal Chem. 2007 Feb 15;79(4):1356-61 [PMID: 17297934]
  204. ACS Nano. 2012 Jan 24;6(1):760-70 [PMID: 22136380]
  205. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10874-81 [PMID: 24131516]
  206. J Am Chem Soc. 2001 Aug 29;123(34):8226-30 [PMID: 11516273]
  207. Chemistry. 2002 Jul 2;8(13):2988-3000 [PMID: 12489230]
  208. Biomacromolecules. 2012 Jun 11;13(6):1845-52 [PMID: 22483345]
  209. PLoS One. 2012;7(9):e44466 [PMID: 22957072]
  210. Chembiochem. 2005 Oct;6(10):1899-905 [PMID: 16149042]
  211. ChemMedChem. 2007 Aug;2(8):1190-201 [PMID: 17589887]
  212. Nano Res. 2014 Oct;7(10):1381-1403 [PMID: 26500721]
  213. J Am Chem Soc. 2004 Jun 2;126(21):6520-1 [PMID: 15161257]

Grants

  1. R01 GM080295/NIGMS NIH HHS
  2. R21 AI109896/NIAID NIH HHS
  3. R01GM080295/NIGMS NIH HHS
  4. R21AI109896/NIAID NIH HHS

MeSH Term

Bacteria
Biosensing Techniques
Carbohydrates
Cell Tracking
Ligands
Nanoparticles
Nanostructures
Nanotechnology
Proteins

Chemicals

Carbohydrates
Ligands
Proteins

Word Cloud

Created with Highcharts 10.0.0glyconanomaterialsGlyconanomaterialsapplicationsstructurescarbohydratesimportantnanomaterialsbiosensingsensingNanomaterialsconstituteclassuniquephysiochemicalpropertiesexcellentscaffoldspresentingbiomoleculesmediatewidevarietybiologicaleventsfabricationcarbohydrate-presentinghighinterestutilitycombiningfeaturesnanoscaleobjectsbiomolecularrecognitioncanalsoproducestrongmultivalenteffectsnanomaterialscaffoldgreatlyenhancesrelativelyweakaffinitiessinglecarbohydrateligandscorrespondingreceptorseffectivelyamplifiescarbohydrate-mediatedinteractionsthusappealingplatformreviewdiscusschemistryconjugationsummarizestrategiestabulateexamplesapplyingvitrovivoproteinsmicrobescellslimitationsfutureperspectivesemergingsystemsfurthermorediscussedBiosensingCarbohydratesGlycoscienceNanotechnology

Similar Articles

Cited By