Alkyl-Nitrile Adlayers as Probes of Plasmonically Induced Electric Fields.

Daniel T Kwasnieski, Hao Wang, Zachary D Schultz
Author Information
  1. Daniel T Kwasnieski: Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
  2. Hao Wang: Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
  3. Zachary D Schultz: Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

Abstract

Vibrational Stark shifts observed from mercaptoalkyl monolayers on surface enhanced Raman (SERS) active materials are reported to provide a direct measurement of the local electric field around plasmonic nanostructures. Adlayers of CN, P-mercaptobenzonitrile, and n-mercaptobutylnitrile were adsorbed to a heterogeneous nanostructured Ag surface. The frequency of the CN moiety was observed to shift in a correlated fashion with the SERS intensity. These shifts are attributed to a vibrational Stark shift arising from rectification of the optical field, which gives rise to a DC potential on the surface. All three molecules showed CN Stark shifts on the plasmonic surfaces. P-mercaptobenzonitrile is observed to be a well-behaved probe of the electric field, providing a narrow spectral line, suggesting a more uniform orientation on the surface. The utility of P-mercaptobenzonitrile was demonstrated by successfully assessing the electric field between gold nanoparticles adsorbed to a monolayer of the nitrile on a flat gold surface. A model is presented where the Stark shift of the alkyl-nitrile probe can be correlated to optical field, providing an intensity independent measurement of the local electric field environment.

References

  1. Analyst. 2011 Nov 7;136(21):4472-9 [PMID: 21946698]
  2. Biochemistry. 2008 Feb 12;47(6):1588-98 [PMID: 18205401]
  3. Science. 1997 Feb 21;275(5303):1102-6 [PMID: 9027306]
  4. Science. 2011 Sep 23;333(6050):1720-3 [PMID: 21940887]
  5. Appl Spectrosc. 2004 Aug;58(8):945-51 [PMID: 18070387]
  6. J Am Chem Soc. 2015 Feb 11;137(5):1972-82 [PMID: 25610956]
  7. J Chem Phys. 2006 Jul 7;125(1):014506 [PMID: 16863315]
  8. Nat Mater. 2011 Nov 23;10(12):911-21 [PMID: 22109608]
  9. Chem Rev. 2011 Jun 8;111(6):3913-61 [PMID: 21542636]
  10. ACS Nano. 2012 Nov 27;6(11):10343-54 [PMID: 23092179]
  11. J Phys Chem B. 2012 Sep 6;116(35):10470-6 [PMID: 22448878]
  12. Phys Rev Lett. 1987 Feb 9;58(6):559-562 [PMID: 10034972]
  13. Anal Chem. 2015 Apr 21;87(8):4347-55 [PMID: 25815795]
  14. Nano Lett. 2006 Oct;6(10):2338-43 [PMID: 17034107]
  15. Nat Commun. 2012 May 08;3:825 [PMID: 22569369]
  16. Biochemistry. 2003 Oct 21;42(41):12050-5 [PMID: 14556636]
  17. Electrophoresis. 2013 Jul;34(14):2092-100 [PMID: 23670668]
  18. ACS Nano. 2012 Aug 28;6(8):7497-504 [PMID: 22849410]
  19. Faraday Discuss. 2006;132:9-26 [PMID: 16833104]
  20. J Phys Chem B. 2005 Mar 17;109(10):4501-6 [PMID: 16851525]
  21. Faraday Discuss. 2011;153:343-60; discussion 395-413 [PMID: 22452089]
  22. Opt Express. 2011 Jan 31;19(3):1777-85 [PMID: 21368992]
  23. Phys Rev Lett. 2006 Jun 23;96(24):243003 [PMID: 16907235]
  24. Angew Chem Int Ed Engl. 2010 Dec 10;49(50):9657-61 [PMID: 21053223]
  25. Nat Nanotechnol. 2010 Oct;5(10):732-6 [PMID: 20852641]
  26. J Phys Chem Lett. 2013 Oct 3;4(19): [PMID: 24273634]
  27. Phys Chem Chem Phys. 2006 Jun 14;8(22):2624-8 [PMID: 16738716]
  28. Anal Bioanal Chem. 2008 Jul;391(5):1907-16 [PMID: 18427785]
  29. Nature. 2012 Nov 22;491(7425):574-7 [PMID: 23135399]
  30. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:601-26 [PMID: 20636091]
  31. J Chem Phys. 2014 Sep 28;141(12):124305 [PMID: 25273435]
  32. J Phys Chem B. 2010 Nov 25;114(46):15331-44 [PMID: 20964430]
  33. Nat Chem. 2011 Jun;3(6):467-72 [PMID: 21602862]
  34. Angew Chem Int Ed Engl. 2008;47(29):5353-6 [PMID: 18548470]
  35. Phys Chem Chem Phys. 2013 Jan 7;15(1):21-36 [PMID: 23042160]
  36. Science. 2008 Jul 18;321(5887):388-92 [PMID: 18583578]
  37. J Phys Chem B. 2009 Mar 12;113(10):2972-83 [PMID: 19708160]
  38. J Am Chem Soc. 2002 Mar 20;124(11):2408-9 [PMID: 11890768]
  39. J Am Chem Soc. 2011 Feb 23;133(7):2218-26 [PMID: 21280633]

Grants

  1. R01 GM109988/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0fieldsurfaceStarkelectricshiftsobservedCNshiftSERSmeasurementlocalplasmonicAdlayersp-mercaptobenzonitrileadsorbedcorrelatedintensityopticalprobeprovidinggoldVibrationalmercaptoalkylmonolayersenhancedRamanactivematerialsreportedprovidedirectaroundnanostructuresn-mercaptobutylnitrileheterogeneousnanostructuredAgfrequencymoietyfashionattributedvibrationalarisingrectificationgivesriseDCpotentialthreemoleculesshowedsurfacesP-mercaptobenzonitrilewell-behavednarrowspectrallinesuggestinguniformorientationutilitydemonstratedsuccessfullyassessingnanoparticlesmonolayernitrileflatmodelpresentedalkyl-nitrilecanindependentenvironmentAlkyl-NitrileProbesPlasmonicallyInducedElectricFields

Similar Articles

Cited By (9)