The 'island effect' in terrestrial global change experiments: a problem with no solution?

Sebastian Leuzinger, Simone Fatichi, Jarrod Cusens, Christian Körner, Pascal A Niklaus
Author Information
  1. Sebastian Leuzinger: Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand sleuzing@aut.ac.nz.
  2. Simone Fatichi: Institute of Environmental Engineering, ETH Zurich, Stefano Franscini Platz 5, 8093 Zurich, Switzerland.
  3. Jarrod Cusens: Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
  4. Christian Körner: Institute of Botany, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland.
  5. Pascal A Niklaus: Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Abstract

Most of the currently experienced global environmental changes (rising atmospheric CO2 concentrations, warming, altered amount and pattern of precipitation, and increased nutrient load) directly or indirectly affect ecosystem surface energy balance and plant transpiration. As a consequence, the relative humidity of the air surrounding the vegetation changes, thus creating a feedback loop whose net effect on transpiration and finally productivity is not trivial to quantify. Forcedly, in any global change experiment with the above drivers, we can only treat small plots, or 'islands', of vegetation. This means that the treated plots will likely experience the ambient humidity conditions influenced by the surrounding, non-treated vegetation. Experimental assessments of global change effects will thus systematically lack modifications originating from these potentially important feedback mechanisms, introducing a bias of unknown magnitude in all measurements of processes directly or indirectly depending on plant transpiration. We call this potential bias the 'island effect'. Here, we discuss its implications in various global change experiments with plants. We also suggest ways to complement experiments using modelling approaches and observational studies. Ultimately, there is no obvious solution to deal with the island effect in field experiments and only models can provide an estimate of modification of responses by these feedbacks. However, we suggest that increasing the awareness of the island effect among both experimental researchers and modellers will greatly improve the interpretation of vegetation responses to global change.

Keywords

References

  1. Oecologia. 1998 Nov;117(1-2):201-208 [PMID: 28308488]
  2. New Phytol. 2015 Jan;205(2):518-25 [PMID: 25346045]
  3. Oecologia. 1998 Jan;113(3):299-313 [PMID: 28307814]
  4. New Phytol. 2005 Feb;165(2):351-71 [PMID: 15720649]
  5. Trends Ecol Evol. 2011 May;26(5):236-41 [PMID: 21444122]
  6. Oecologia. 2000 Nov;125(3):380-388 [PMID: 28547333]
  7. Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18052-6 [PMID: 16330779]
  8. Proc Biol Sci. 2009 Jul 7;276(1666):2333-43 [PMID: 19324804]
  9. Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19368-73 [PMID: 20974944]
  10. New Phytol. 2008;179(3):837-847 [PMID: 18537885]
  11. New Phytol. 2011 Jul;191(1):15-18 [PMID: 21631506]
  12. Plant Physiol. 2003 Aug;132(4):2166-73 [PMID: 12913171]
  13. Environ Pollut. 2010 Aug;158(8):2527-32 [PMID: 20570421]
  14. New Phytol. 2001 Feb;149(2):247-264 [PMID: 33874628]
  15. Science. 2003 Nov 28;302(5650):1512-3 [PMID: 14645831]
  16. Tree Physiol. 2007 Apr;27(4):597-610 [PMID: 17242001]
  17. Nature. 2014 Jul 31;511(7511):583-6 [PMID: 24870242]
  18. New Phytol. 2014 Mar;201(4):1086-1095 [PMID: 24261587]
  19. Science. 2002 Dec 13;298(5601):2173-6 [PMID: 12481133]
  20. Ann Bot. 2013 Mar;111(3):433-44 [PMID: 23293018]
  21. Oecologia. 2004 Jun;140(1):11-25 [PMID: 15156395]
  22. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9892-3 [PMID: 12907704]
  23. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9513-8 [PMID: 20445083]
  24. Oecologia. 2013 Mar;171(3):639-51 [PMID: 23306422]
  25. Nature. 2011 Aug 03;476(7359):202-5 [PMID: 21814202]
  26. Glob Chang Biol. 2013 Jul;19(7):2117-32 [PMID: 23504870]
  27. Oecologia. 2001 Feb;126(4):543-562 [PMID: 28547240]
  28. Plant Physiol. 2007 Jan;143(1):4-10 [PMID: 17210908]
  29. New Phytol. 2013 Jan;197(1):6-8 [PMID: 23181678]
  30. New Phytol. 2016 Jan;209(1):137-51 [PMID: 26389742]
  31. Plant Cell Environ. 2007 Mar;30(3):258-270 [PMID: 17263773]
  32. Planta. 1980 Jun;149(1):78-90 [PMID: 24306196]
  33. Science. 2002 Dec 6;298(5600):1987-90 [PMID: 12471257]

Word Cloud

Created with Highcharts 10.0.0globalvegetationchangetranspirationfeedbackeffectwillexperimentschangesCO2warmingdirectlyindirectlyplanthumiditysurroundingthuscanplotseffectsbias'islandeffect'suggestislandresponsescurrentlyexperiencedenvironmentalrisingatmosphericconcentrationsalteredamountpatternprecipitationincreasednutrientloadaffectecosystemsurfaceenergybalanceconsequencerelativeaircreatingloopwhosenetfinallyproductivitytrivialquantifyForcedlyexperimentdriverstreatsmall'islands'meanstreatedlikelyexperienceambientconditionsinfluencednon-treatedExperimentalassessmentssystematicallylackmodificationsoriginatingpotentiallyimportantmechanismsintroducingunknownmagnitudemeasurementsprocessesdependingcallpotentialdiscussimplicationsvariousplantsalsowayscomplementusingmodellingapproachesobservationalstudiesUltimatelyobvioussolutiondealfieldmodelsprovideestimatemodificationfeedbacksHoweverincreasingawarenessamongexperimentalresearchersmodellersgreatlyimproveinterpretationterrestrialexperiments:problemsolution?DGVMFACEelevatedhydrologyland–atmospherecoupling

Similar Articles

Cited By