Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants.

Mohammad Reza Bolouri Moghaddam, Andreas Vilcinskas, Mohammad Rahnamaeian
Author Information
  1. Mohammad Reza Bolouri Moghaddam: Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany.
  2. Andreas Vilcinskas: Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany.
  3. Mohammad Rahnamaeian: Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany.

Abstract

Plants express a diverse repertoire of functionally and structurally distinct antimicrobial peptides (AMPs) which provide innate immunity by acting directly against a wide range of pathogens. AMPs are expressed in nearly all plant organs, either constitutively or in response to microbial infections. In addition to their direct activity, they also contribute to plant immunity by modulating defence responses resulting from pathogen-associated molecular pattern/effector-triggered immunity, and also interact with other AMPs and pathways involving mitogen-activated protein kinases, reactive oxygen species, hormonal cross-talk and sugar signalling. Such links among AMPs and defence signalling pathways are poorly understood and there is no clear model for their interactions. This article provides a critical review of the empirical data to shed light on the wider role of AMPs in the robust and resource-effective defence responses of plants.

Keywords

References

  1. Plant Mol Biol. 1999 Oct;41(3):313-9 [PMID: 10598099]
  2. Plant Physiol. 2000 Apr;122(4):1301-10 [PMID: 10759527]
  3. Trends Plant Sci. 2001 May;6(5):212-9 [PMID: 11335174]
  4. J Exp Bot. 2001 Jul;52(360):1427-36 [PMID: 11457902]
  5. Curr Biol. 2002 Feb 5;12(3):R82-4 [PMID: 11839284]
  6. Nature. 2002 Feb 28;415(6875):977-83 [PMID: 11875555]
  7. Plant Physiol. 2002 Mar;128(3):951-61 [PMID: 11891250]
  8. Trends Immunol. 2002 Jun;23(6):283-4 [PMID: 12072365]
  9. Curr Opin Plant Biol. 2002 Aug;5(4):325-31 [PMID: 12179966]
  10. Plant Physiol. 1995 Aug;108(4):1673-1678 [PMID: 12228572]
  11. Plant Cell. 1992 Feb;4(2):129-134 [PMID: 12297644]
  12. Plant Cell. 2003 Mar;15(3):760-70 [PMID: 12615947]
  13. Plant Cell Physiol. 2003 Mar;44(3):296-303 [PMID: 12668776]
  14. Curr Opin Plant Biol. 2004 Aug;7(4):456-64 [PMID: 15231270]
  15. Trends Plant Sci. 2004 Oct;9(10):490-8 [PMID: 15465684]
  16. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15811-6 [PMID: 15498873]
  17. Antimicrob Agents Chemother. 2005 May;49(5):1727-32 [PMID: 15855488]
  18. Annu Rev Phytopathol. 2005;43:205-27 [PMID: 16078883]
  19. Plant Physiol. 2006 Jan;140(1):249-62 [PMID: 16377744]
  20. Plant Biol (Stuttg). 2006 Jan;8(1):1-10 [PMID: 16435264]
  21. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10098-103 [PMID: 16785434]
  22. Plant J. 2006 Aug;47(3):329-42 [PMID: 16792695]
  23. Plant Physiol. 2006 Oct;142(2):775-87 [PMID: 16891549]
  24. Cell. 2006 Sep 8;126(5):969-80 [PMID: 16959575]
  25. Plant J. 2006 Nov;48(4):485-98 [PMID: 17059410]
  26. PLoS Pathog. 2006 Nov;2(11):e123 [PMID: 17096590]
  27. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  28. Cell Microbiol. 2007 Jun;9(6):1491-506 [PMID: 17253976]
  29. Nat Biotechnol. 2007 Apr;25(4):465-72 [PMID: 17384586]
  30. Mol Plant Microbe Interact. 2007 Jul;20(7):832-42 [PMID: 17601170]
  31. J Mol Microbiol Biotechnol. 2007;13(4):243-7 [PMID: 17827975]
  32. Transgenic Res. 2008 Oct;17(5):873-9 [PMID: 18306055]
  33. J Biol Chem. 2008 May 23;283(21):14445-52 [PMID: 18339623]
  34. J Agric Food Chem. 2008 May 14;56(9):2989-95 [PMID: 18393437]
  35. Mol Plant Microbe Interact. 2008 Jun;21(6):709-19 [PMID: 18624635]
  36. EMBO J. 2008 Aug 20;27(16):2214-21 [PMID: 18650934]
  37. Plant Cell Environ. 2008 Dec;31(12):1864-81 [PMID: 18811735]
  38. J Exp Bot. 2008;59(14):4029-43 [PMID: 18836138]
  39. Phytopathology. 2008 Nov;98(11):1242-7 [PMID: 18943414]
  40. Planta. 2009 Jan;229(2):383-91 [PMID: 18956212]
  41. J Exp Bot. 2009;60(1):9-18 [PMID: 19036839]
  42. Plant Mol Biol. 2009 Mar;69(4):473-88 [PMID: 19083153]
  43. Plant Physiol. 2009 Feb;149(2):1099-110 [PMID: 19109413]
  44. Plant Physiol. 2009 Feb;149(2):606-15 [PMID: 19201916]
  45. Nat Chem Biol. 2009 May;5(5):308-16 [PMID: 19377457]
  46. Trends Plant Sci. 2009 Jun;14(6):310-7 [PMID: 19443266]
  47. Plant Physiol. 2009 Aug;150(4):1638-47 [PMID: 19561123]
  48. FEBS Lett. 2009 Aug 6;583(15):2513-6 [PMID: 19596007]
  49. Curr Opin Plant Biol. 2009 Aug;12(4):414-20 [PMID: 19608450]
  50. Sci Signal. 2009 Aug 18;2(84):ra45 [PMID: 19690331]
  51. J Exp Bot. 2009;60(14):4105-14 [PMID: 19734262]
  52. Plant Cell. 2009 Sep;21(9):2898-913 [PMID: 19749153]
  53. Nature. 2010 Mar 18;464(7287):418-22 [PMID: 20164835]
  54. Plant Cell. 2010 Feb;22(2):508-22 [PMID: 20179141]
  55. Trends Plant Sci. 2010 May;15(5):247-58 [PMID: 20304701]
  56. Biochem J. 2010 Jul 1;429(1):73-83 [PMID: 20397974]
  57. FEBS J. 2010 May;277(9):2022-37 [PMID: 20412056]
  58. Curr Microbiol. 2011 Apr;62(4):1209-17 [PMID: 21170711]
  59. Nitric Oxide. 2011 Aug 1;25(2):216-21 [PMID: 21195205]
  60. Plant Physiol. 2011 Mar;155(3):1325-38 [PMID: 21205619]
  61. Biochem Biophys Res Commun. 2011 Feb 11;405(2):267-71 [PMID: 21219857]
  62. Plant Cell. 2011 Jan;23(1):4-15 [PMID: 21278123]
  63. J Plant Res. 2011 Jul;124(4):489-99 [PMID: 21380629]
  64. Biochem Res Int. 2011;2011:250349 [PMID: 21403856]
  65. Biochem Biophys Res Commun. 2011 Apr 29;408(1):89-93 [PMID: 21458420]
  66. J Plant Res. 2012 Jan;125(1):115-24 [PMID: 21516363]
  67. PLoS One. 2011 Apr 20;6(4):e19008 [PMID: 21533105]
  68. Plant Physiol. 2011 Oct;157(2):815-30 [PMID: 21813654]
  69. Plant Signal Behav. 2011 Sep;6(9):1325-32 [PMID: 21847025]
  70. Front Microbiol. 2011 Mar 16;2:47 [PMID: 21993350]
  71. Biochem Biophys Res Commun. 2012 Jan 6;417(1):56-61 [PMID: 22120633]
  72. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4674-7 [PMID: 22331878]
  73. Plant Cell Environ. 2012 Aug;35(8):1483-99 [PMID: 22394204]
  74. J Exp Bot. 2012 Jun;63(11):3989-98 [PMID: 22553288]
  75. Annu Rev Plant Biol. 2012;63:353-80 [PMID: 22554243]
  76. Annu Rev Cell Dev Biol. 2012;28:489-521 [PMID: 22559264]
  77. Plant Physiol Biochem. 2012 Sep;58:245-52 [PMID: 22858529]
  78. Front Immunol. 2012 Oct 25;3:325 [PMID: 23112800]
  79. Gene. 2013 Jan 15;513(1):1-13 [PMID: 23123731]
  80. Mol Plant Microbe Interact. 2013 Mar;26(3):271-7 [PMID: 23151172]
  81. Plant Cell. 2013 Feb;25(2):744-61 [PMID: 23435661]
  82. PLoS One. 2013;8(3):e58992 [PMID: 23527067]
  83. J Exp Bot. 2013 Apr;64(6):1439-49 [PMID: 23564957]
  84. Antimicrob Agents Chemother. 2013 Aug;57(8):3667-75 [PMID: 23689717]
  85. FEBS J. 2013 Aug;280(15):3594-608 [PMID: 23702306]
  86. Nat Rev Microbiol. 2013 Nov;11(11):745-60 [PMID: 24129510]
  87. Plant Signal Behav. 2013 Nov;8(11):e27335 [PMID: 24309561]
  88. Plant Physiol. 2014 Feb;164(2):499-512 [PMID: 24385567]
  89. Biosci Rep. 2014 Jun 25;34(3):null [PMID: 24865400]
  90. Plant Sci. 2014 Nov;228:135-49 [PMID: 25438794]
  91. Proc Biol Sci. 2015 May 7;282(1806):20150293 [PMID: 25833860]
  92. Appl Microbiol Biotechnol. 2015 Nov;99(21):8847-55 [PMID: 26307444]
  93. Plant Physiol. 1995 Nov;109(3):813-20 [PMID: 8552715]
  94. Plant Physiol. 1996 Oct;112(2):615-22 [PMID: 8883377]
  95. Plant Cell. 1996 Dec;8(12):2309-23 [PMID: 8989885]
  96. Plant J. 1997 Mar;11(3):539-48 [PMID: 9107040]
  97. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13959-64 [PMID: 9811908]
  98. Plant Cell. 1998 Dec;10(12):2103-13 [PMID: 9836748]

MeSH Term

Antimicrobial Cationic Peptides
Mitogen-Activated Protein Kinases
Plant Growth Regulators
Plant Immunity
Plants
Reactive Oxygen Species

Chemicals

Antimicrobial Cationic Peptides
Plant Growth Regulators
Reactive Oxygen Species
Mitogen-Activated Protein Kinases

Word Cloud

Created with Highcharts 10.0.0AMPsimmunityantimicrobialpeptidesplantdefencepathwayssignallingalsoresponseshormonalcross-talksugarplantsPlantsexpressdiverserepertoirefunctionallystructurallydistinctprovideinnateactingdirectlywiderangepathogensexpressednearlyorganseitherconstitutivelyresponsemicrobialinfectionsadditiondirectactivitycontributemodulatingresultingpathogen-associatedmolecularpattern/effector-triggeredinteractinvolvingmitogen-activatedproteinkinasesreactiveoxygenspecieslinksamongpoorlyunderstoodclearmodelinteractionsarticleprovidescriticalreviewempiricaldatashedlightwiderrolerobustresource-effectiveCooperativeinteractioninterrelatedimmunePTI/ETI

Similar Articles

Cited By