Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering.

Liliana Quiza, Marc St-Arnaud, Etienne Yergeau
Author Information
  1. Liliana Quiza: Energy, Mining and Environment, National Research Council Canada, Montréal QC, Canada ; Institut de Recherche en Biologie Végétale - Jardin Botanique de Montréal and Université de Montréal, Montréal QC, Canada.
  2. Marc St-Arnaud: Institut de Recherche en Biologie Végétale - Jardin Botanique de Montréal and Université de Montréal, Montréal QC, Canada.
  3. Etienne Yergeau: Energy, Mining and Environment, National Research Council Canada, Montréal QC, Canada.

Abstract

The goal of microbiome engineering is to manipulate the microbiome toward a certain type of community that will optimize plant functions of interest. For instance, in crop production the goal is to reduce disease susceptibility, increase nutrient availability increase abiotic stress tolerance and increase crop yields. Various approaches can be devised to engineer the plant-microbiome, but one particularly promising approach is to take advantage of naturally evolved plant-microbiome communication channels. This is, however, very challenging as the understanding of the plant-microbiome communication is still mostly rudimentary and plant-microbiome interactions varies between crops species (and even cultivars), between individual members of the microbiome and with environmental conditions. In each individual case, many aspects of the plant-microorganisms relationship should be thoroughly scrutinized. In this article we summarize some of the existing plant-microbiome engineering studies and point out potential avenues for further research.

Keywords

References

  1. Can J Microbiol. 1970 Mar;16(3):153-8 [PMID: 5437386]
  2. Annu Rev Plant Biol. 2006;57:233-66 [PMID: 16669762]
  3. Plant Cell Physiol. 1999 May;40(5):482-8 [PMID: 10427772]
  4. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):557-64 [PMID: 12448751]
  5. Trends Microbiol. 1994 Sep;2(9):318-24 [PMID: 7812664]
  6. Appl Environ Microbiol. 2009 Feb;75(3):748-57 [PMID: 19060168]
  7. Mol Plant Microbe Interact. 2000 Jun;13(6):637-48 [PMID: 10830263]
  8. Plant Cell Environ. 2006 May;29(5):909-18 [PMID: 17087474]
  9. Trends Plant Sci. 2004 Jun;9(6):263-6 [PMID: 15165555]
  10. Trends Biotechnol. 2014 May;32(5):271-80 [PMID: 24735678]
  11. Nat Biotechnol. 1997 Apr;15(4):363-8 [PMID: 9094139]
  12. Science. 2001 Oct 26;294(5543):804-8 [PMID: 11679658]
  13. Plant Cell Physiol. 2008 Nov;49(11):1747-51 [PMID: 18842596]
  14. Annu Rev Phytopathol. 2006;44:135-62 [PMID: 16602946]
  15. Front Plant Sci. 2013 May 30;4:165 [PMID: 23755059]
  16. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  17. J Nematol. 2007 Sep;39(3):213-20 [PMID: 19259490]
  18. Appl Environ Microbiol. 2001 Oct;67(10):4742-51 [PMID: 11571180]
  19. Zoology (Jena). 2011 Sep;114(4):185-90 [PMID: 21737250]
  20. Annu Rev Microbiol. 2009;63:99-118 [PMID: 19566421]
  21. Science. 2005 Oct 7;310(5745):121-5 [PMID: 16210544]
  22. Plant Physiol. 2007 Aug;144(4):1763-76 [PMID: 17600134]
  23. Plant Physiol. 2003 Aug;132(4):2205-17 [PMID: 12913175]
  24. Plant J. 2000 Jul;23(1):11-28 [PMID: 10929098]
  25. ISME J. 2014 Feb;8(2):344-58 [PMID: 24067257]
  26. J Bacteriol. 2009 Feb;191(3):890-7 [PMID: 19028884]
  27. Nat Chem Biol. 2009 May;5(5):308-16 [PMID: 19377457]
  28. Plant Physiol. 2003 May;132(1):44-51 [PMID: 12746510]
  29. Appl Environ Microbiol. 1995 Mar;61(3):1004-12 [PMID: 16534950]
  30. Can J Microbiol. 2004 Apr;50(4):251-60 [PMID: 15213749]
  31. Can J Microbiol. 2008 Oct;54(10):876-86 [PMID: 18923557]
  32. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  33. Environ Microbiol. 2015 Aug;17(8):3025-38 [PMID: 25970820]
  34. Curr Opin Biotechnol. 2009 Dec;20(6):642-50 [PMID: 19875278]
  35. New Phytol. 2015 Jun;206(4):1196-206 [PMID: 25655016]
  36. Can J Microbiol. 2011 May;57(5):355-65 [PMID: 21529122]
  37. Science. 2011 May 27;332(6033):1097-100 [PMID: 21551032]
  38. Plant Biotechnol J. 2007 Nov;5(6):735-45 [PMID: 17711412]
  39. Curr Opin Biotechnol. 2015 Apr;32:136-42 [PMID: 25555138]
  40. Appl Environ Microbiol. 2008 Feb;74(3):738-44 [PMID: 18083870]
  41. Indian J Microbiol. 2007 Dec;47(4):289-97 [PMID: 23100680]
  42. Plant Cell Environ. 2008 Oct;31(10):1497-509 [PMID: 18657054]
  43. Microbiology. 2006 Nov;152(Pt 11):3167-74 [PMID: 17074888]
  44. Plant Physiol. 2014 Oct;166(2):689-700 [PMID: 25059708]
  45. Phytochemistry. 2009 Sep;70(13-14):1589-99 [PMID: 19700177]
  46. Plant Cell Environ. 2009 Jun;32(6):666-81 [PMID: 19143988]
  47. Appl Environ Microbiol. 2005 Dec;71(12):8500-5 [PMID: 16332840]
  48. J Microbiol Methods. 2013 Jul;94(1):30-6 [PMID: 23611840]
  49. Nature. 2001 Jun 14;411(6839):813-7 [PMID: 11459062]
  50. PLoS One. 2015 Jun 08;10(6):e0128272 [PMID: 26053848]
  51. ISME J. 2014 Apr;8(4):790-803 [PMID: 24196324]
  52. Nature. 2012 Aug 2;488(7409):91-5 [PMID: 22859207]
  53. FEBS Lett. 2007 May 25;581(12):2255-62 [PMID: 17418140]
  54. Nat Rev Microbiol. 2013 Apr;11(4):252-63 [PMID: 23493145]
  55. Plant Cell Physiol. 2000 Sep;41(9):1030-7 [PMID: 11100775]
  56. ISME J. 2014 Feb;8(2):331-43 [PMID: 23985744]
  57. Science. 2013 Aug 16;341(6147):746-51 [PMID: 23950531]
  58. Mol Plant Microbe Interact. 2002 Sep;15(9):866-74 [PMID: 12236593]
  59. Microbiol Res. 2014 Jan 20;169(1):30-9 [PMID: 24095256]
  60. PLoS One. 2013;8(2):e55731 [PMID: 23383346]
  61. FEMS Microbiol Ecol. 2008 Mar;63(3):372-82 [PMID: 18205817]
  62. FEMS Microbiol Ecol. 2009 May;68(2):212-22 [PMID: 19573202]
  63. PLoS One. 2012;7(10):e48479 [PMID: 23119032]
  64. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20 [PMID: 12448746]
  65. Plant Physiol. 2001 Dec;127(4):1836-44 [PMID: 11743127]
  66. PLoS One. 2015 Jul 10;10(7):e0132062 [PMID: 26161539]

Word Cloud

Created with Highcharts 10.0.0plant-microbiomemicrobiomeengineeringincreasegoalcropcommunicationinteractionsindividualsignalingrhizospheremanipulatetowardcertaintypecommunitywilloptimizeplantfunctionsinterestinstanceproductionreducediseasesusceptibilitynutrientavailabilityabioticstresstoleranceyieldsVariousapproachescandevisedengineeroneparticularlypromisingapproachtakeadvantagenaturallyevolvedchannelshoweverchallengingunderstandingstillmostlyrudimentaryvariescropsspeciesevencultivarsmembersenvironmentalconditionscasemanyaspectsplant-microorganismsrelationshipthoroughlyscrutinizedarticlesummarizeexistingstudiespointpotentialavenuesresearchHarnessingphytomicrobiomeagriculturebeneficialmicroorganismsplant–microbe

Similar Articles

Cited By