Antibody humanization by structure-based computational protein design.

Yoonjoo Choi, Casey Hua, Charles L Sentman, Margaret E Ackerman, Chris Bailey-Kellogg
Author Information
  1. Yoonjoo Choi: a Department of Computer Science ; Dartmouth College ; Hanover , NH USA.
  2. Casey Hua: b Thayer School of Engineering; Dartmouth College ; Hanover , NH USA.
  3. Charles L Sentman: c Department of Microbiology and Immunology ; Geisel School of Medicine; Dartmouth College ; Lebanon , NH USA.
  4. Margaret E Ackerman: b Thayer School of Engineering; Dartmouth College ; Hanover , NH USA.
  5. Chris Bailey-Kellogg: a Department of Computer Science ; Dartmouth College ; Hanover , NH USA.

Abstract

Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH ("Computationally-Driven Antibody Humanization") in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.

Keywords

References

  1. Proteins. 2012 Mar;80(3):790-806 [PMID: 22180081]
  2. J Mol Biol. 2007 Jun 8;369(3):852-62 [PMID: 17442342]
  3. J Comput Biol. 2013 Feb;20(2):152-65 [PMID: 23384000]
  4. Proteins. 2014 Aug;82(8):1646-55 [PMID: 24619874]
  5. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8571-6 [PMID: 24799704]
  6. Methods. 2005 May;36(1):61-8 [PMID: 15848075]
  7. World J Biol Chem. 2012 Dec 26;3(12):187-96 [PMID: 23275803]
  8. MAbs. 2010 May-Jun;2(3):256-65 [PMID: 20400861]
  9. Nature. 1989 Dec 21-28;342(6252):877-83 [PMID: 2687698]
  10. Proteins. 2014 Aug;82(8):1624-35 [PMID: 24756852]
  11. Protein Sci. 2001 Mar;10(3):599-612 [PMID: 11344328]
  12. J Mol Biol. 2009 May 22;388(5):941-53 [PMID: 19324053]
  13. Nature. 1990 Dec 6;348(6301):552-4 [PMID: 2247164]
  14. MAbs. 2014 Jul-Aug;6(4):915-27 [PMID: 24927273]
  15. Nat Rev Immunol. 2006 May;6(5):343-57 [PMID: 16622479]
  16. J Mol Biol. 2011 Feb 18;406(2):228-56 [PMID: 21035459]
  17. J Immunol. 2012 Sep 1;189(5):2290-9 [PMID: 22851709]
  18. Nat Biotechnol. 2003 Feb;21(2):163-70 [PMID: 12536217]
  19. J Mol Biol. 1992 Mar 20;224(2):487-99 [PMID: 1560463]
  20. Methods. 2005 May;36(1):3-10 [PMID: 15848070]
  21. Biophys J. 1994 May;66(5):1335-40 [PMID: 8061189]
  22. Mol Immunol. 2007 Mar;44(8):1986-98 [PMID: 17079018]
  23. Protein Sci. 2006 Nov;15(11):2507-24 [PMID: 17075131]
  24. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3764-9 [PMID: 19228942]
  25. Front Biosci. 2008 Jan 01;13:1619-33 [PMID: 17981654]
  26. J Mol Biol. 1997 Nov 7;273(4):927-48 [PMID: 9367782]
  27. Clin Immunol. 2013 Dec;149(3):534-55 [PMID: 24263283]
  28. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D671-4 [PMID: 15608286]
  29. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W435-40 [PMID: 15215425]
  30. Nat Rev Drug Discov. 2010 Apr;9(4):325-38 [PMID: 20305665]
  31. Cold Spring Harb Protoc. 2011 Jun 01;2011(6):750-61 [PMID: 21632774]
  32. Scand J Immunol. 2009 Dec;70(6):526-30 [PMID: 19906193]
  33. Proteins. 2000 Aug 15;40(3):389-408 [PMID: 10861930]
  34. Biotechnol Bioeng. 2015 Jul;112(7):1306-18 [PMID: 25655032]
  35. Proteins. 2014 Aug;82(8):1611-23 [PMID: 24519881]
  36. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8577-82 [PMID: 24843166]
  37. Mol Immunol. 2008 Aug;45(14):3832-9 [PMID: 18614234]
  38. Mol Biosyst. 2011 Dec;7(12):3327-34 [PMID: 22011953]
  39. J Mol Biol. 1987 Aug 20;196(4):901-17 [PMID: 3681981]
  40. J Biol Chem. 1997 Apr 18;272(16):10678-84 [PMID: 9099717]
  41. Br J Haematol. 2015 Mar;168(6):902-4 [PMID: 25271537]
  42. PLoS Comput Biol. 2015 Jan 08;11(1):e1003988 [PMID: 25568954]
  43. Proteins. 2009 Dec;77(4):778-95 [PMID: 19603484]
  44. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W521-4 [PMID: 22675071]
  45. Science. 1996 Apr 5;272(5258):67-74 [PMID: 8600539]
  46. Handb Exp Pharmacol. 2008;(181):69-97 [PMID: 18071942]
  47. Nat Biotechnol. 2014 Apr;32(4):356-63 [PMID: 24633243]
  48. MAbs. 2011 Mar-Apr;3(2):203-8 [PMID: 21285537]
  49. Bioinformatics. 2008 Sep 1;24(17):1953-4 [PMID: 18641403]
  50. Proteins. 2009 Feb 1;74(2):497-514 [PMID: 19062174]
  51. J Mol Biol. 2003 Aug 15;331(3):623-41 [PMID: 12899833]
  52. Methods. 2005 May;36(1):35-42 [PMID: 15848073]
  53. Cell Mol Life Sci. 2014 Dec;71(24):4869-80 [PMID: 24880662]
  54. J Mol Biol. 2010 Mar 12;396(5):1439-50 [PMID: 20043919]
  55. Bioinformatics. 2015 Feb 1;31(3):434-5 [PMID: 25304777]
  56. Br J Pharmacol. 2009 May;157(2):220-33 [PMID: 19459844]
  57. Nat Chem Biol. 2009 Aug;5(8):526-9 [PMID: 19620988]
  58. Curr Opin Chem Biol. 2014 Apr;19:8-16 [PMID: 24780274]
  59. Mol Immunol. 2004 Jul;41(9):863-72 [PMID: 15261458]
  60. BMC Biotechnol. 2013 Jul 05;13:55 [PMID: 23826749]
  61. Protein Eng Des Sel. 2013 Oct;26(10):611-20 [PMID: 23708320]
  62. Methods. 2005 May;36(1):43-60 [PMID: 15848074]
  63. Proteins. 2006 Nov 15;65(3):712-25 [PMID: 16981200]
  64. Immunol Today. 2000 Aug;21(8):397-402 [PMID: 10916143]
  65. Immunogenetics. 1995;41(4):178-228 [PMID: 7890324]
  66. Bioinformatics. 2013 Sep 15;29(18):2285-91 [PMID: 23803466]
  67. Biotechnol Genet Eng Rev. 2013;29:175-86 [PMID: 24568279]
  68. Curr Opin Chem Biol. 2013 Apr;17(2):221-8 [PMID: 23498973]
  69. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):969-73 [PMID: 8302875]
  70. PLoS Comput Biol. 2012 Jan;8(1):e1002335 [PMID: 22279426]
  71. Nature. 1986 May 29-Jun 4;321(6069):522-5 [PMID: 3713831]
  72. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3557-62 [PMID: 16505368]
  73. Proteins. 2010 May 1;78(6):1431-40 [PMID: 20034110]
  74. Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6 [PMID: 18428767]
  75. Nat Rev Drug Discov. 2010 Oct;9(10):767-74 [PMID: 20811384]
  76. Proteins. 2014 Feb;82(2):175-86 [PMID: 23589399]
  77. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  78. Int J Cancer. 2001 Dec 1;94(5):717-26 [PMID: 11745468]

Grants

  1. R01 GM098977/NIGMS NIH HHS
  2. 5P30GM10345/NIGMS NIH HHS
  3. R01-GM-098977/NIGMS NIH HHS

MeSH Term

Animals
Antibodies, Monoclonal, Humanized
Complementarity Determining Regions
Computational Biology
Drug Design
Humans
Immunoglobulin G
Immunoglobulin Variable Region
Mice
Models, Molecular
Prospective Studies
Protein Conformation
Protein Engineering
Retrospective Studies

Chemicals

Antibodies, Monoclonal, Humanized
Complementarity Determining Regions
Immunoglobulin G
Immunoglobulin Variable Region

Word Cloud

Created with Highcharts 10.0.0proteinhumanizationcomputationaldesignstabilityantigenbindingapproachvariantsTZ47antibodyhumanizedexpressedsuccessfullyaffinityCoDAHAntibodyhumanhumannessstructuralmurineB7H6designedVH/VLantibodies6Antibodiesderivednon-humansourcesmustmodifiedtherapeuticusemitigateundesirableimmuneresponsescomplementarity-determiningregionCDRgrafting-basedtechniquesappliedmanycasesremainschallengingmaintaindesiredupongraftingdevelopedalternativecalled"Computationally-DrivenHumanization"methodsdirectlyselectsetsaminoacidsincorporategermlinesequencesincreasemaintainingRetrospectivestudiesshowableidentifydeemedbeneficialaccordingcriteriaeventargetslackingcrystalstructuresProspectiveapplicationanti-humandemonstratesFourdiversepossibleuniquecombinationsproducedfull-lengthIgG1Solublecellsurfaceassaysshowed75%8computationallycompetedFurthermore4boundestimatedKDwithinordermagnitudeoriginalcontrasttraditionalCDR-graftedvariantresultssuggestdescribedcanusedefficientlygeneratefunctionalprovidetemplatesmaturationstructure-basedstringcontentparetooptimizationstructureanalysis

Similar Articles

Cited By