Analysis of Circadian Rhythms in the Basal Filamentous Ascomycete Pyronema confluens.

Stefanie Traeger, Minou Nowrousian
Author Information
  1. Stefanie Traeger: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  2. Minou Nowrousian: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany minou.nowrousian@rub.de.

Abstract

Many organisms use circadian clocks to adapt to daily changes in the environment. Major insights into the molecular mechanisms of circadian oscillators have been gained through studies of the model organism Neurospora crassa; however, little is known about molecular components of circadian clocks in other fungi. An important part of the N. crassa circadian clock is the frequency (frq) gene, homologs of which can be found in Sordariomycetes, Dothideomycetes, and Leotiomycetes, but not Eurotiomycetes. Recently, we identified a frq homolog in Pyronema confluens, a member of the early-diverging Pezizomycete lineage of filamentous ascomycetes. The P. confluens FRQ shares many conserved domains with the N. crassa FRQ. However, there is no known morphological phenotype showing overt circadian rhythmicity in P. confluens. To investigate whether a molecular clock is present, we analyzed frq transcription in constant darkness, and found circadian oscillation of frq with a peak in the subjective morning. This rhythm was temperature compensated. To identify additional clock-controlled genes, we performed RNA sequencing of two time points (subjective morning and evening). Circadian expression of two morning-specific genes was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) over a full time course, whereas expression of two putative morning-specific and five putative evening-specific genes could not be verified as circadian. frq expression was synchronized, but not entrained by light. In summary, we have found evidence for two of the three main properties of circadian rhythms (free-running rhythm, temperature compensation) in P. confluens, suggesting that a circadian clock with rhythmically expressed frq is present in this basal filamentous ascomycete.

Keywords

References

  1. Science. 1994 Mar 18;263(5153):1578-84 [PMID: 8128244]
  2. EMBO J. 1994 May 15;13(10):2257-66 [PMID: 8194516]
  3. BMC Bioinformatics. 2007;8:460 [PMID: 18034891]
  4. Cold Spring Harb Symp Quant Biol. 2007;72:57-68 [PMID: 18522516]
  5. PLoS One. 2008;3(8):e3105 [PMID: 18769678]
  6. Genome Biol. 2008;9(8):R130 [PMID: 18710561]
  7. PLoS Genet. 2009 Apr;5(4):e1000442 [PMID: 19343201]
  8. Bioinformatics. 2009 May 1;25(9):1189-91 [PMID: 19151095]
  9. Genetics. 2003 Jul;164(3):923-33 [PMID: 12871904]
  10. Trends Biochem Sci. 1999 Jan;24(1):34-6 [PMID: 10087920]
  11. J Biol Rhythms. 2004 Oct;19(5):414-24 [PMID: 15534321]
  12. J Biol Rhythms. 2004 Oct;19(5):425-35 [PMID: 15534322]
  13. J Biol Rhythms. 2010 Oct;25(5):372-80 [PMID: 20876817]
  14. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  15. J Biol Chem. 2006 Sep 29;281(39):28489-93 [PMID: 16905532]
  16. Curr Opin Microbiol. 2006 Dec;9(6):579-87 [PMID: 17064954]
  17. Adv Genet. 2007;58:25-66 [PMID: 17452245]
  18. Genes Dev. 2007 Jun 15;21(12):1494-505 [PMID: 17575051]
  19. Mol Cell. 2011 Sep 2;43(5):713-22 [PMID: 21884974]
  20. PLoS Pathog. 2011 Sep;7(9):e1002179 [PMID: 21909256]
  21. Adv Genet. 2011;74:55-103 [PMID: 21924975]
  22. BMC Genomics. 2012;13:511 [PMID: 23016559]
  23. Eukaryot Cell. 2013 Jan;12(1):59-69 [PMID: 23125351]
  24. J Basic Microbiol. 2013 Sep;53(9):742-51 [PMID: 22961396]
  25. PLoS Genet. 2013;9(9):e1003820 [PMID: 24068976]
  26. Mol Cell. 2013 Dec 26;52(6):832-43 [PMID: 24316221]
  27. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1397-402 [PMID: 24474764]
  28. Fungal Genet Biol. 2014 Mar;64:67-72 [PMID: 24382357]
  29. Cell Mol Life Sci. 2014 Jul;71(14):2667-80 [PMID: 24515123]
  30. Fungal Genet Biol. 2014 Jul;68:48-59 [PMID: 24792494]
  31. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):16995-7002 [PMID: 25362047]
  32. Genetics. 2015 Jan;199(1):233-45 [PMID: 25361899]
  33. Biochemistry. 2015 Jan 20;54(2):150-6 [PMID: 25302868]
  34. Methods Enzymol. 2015;551:29-52 [PMID: 25662450]
  35. Methods Enzymol. 2015;551:349-67 [PMID: 25662464]
  36. Curr Biol. 2015 Mar 30;25(7):964-8 [PMID: 25802150]
  37. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8744-9 [PMID: 26124115]
  38. Mycologia. 2010 Mar-Apr;102(2):269-78 [PMID: 20361495]
  39. J Biol Chem. 2010 Apr 9;285(15):11508-15 [PMID: 20159972]
  40. Bioinformatics. 2010 Aug 1;26(15):1918-9 [PMID: 20538728]
  41. Annu Rev Physiol. 2001;63:757-94 [PMID: 11181975]
  42. Genetics. 2001 Mar;157(3):1057-65 [PMID: 11238394]
  43. EMBO J. 2001 Jan 15;20(1-2):101-8 [PMID: 11226160]
  44. EMBO J. 2001 Dec 17;20(24):7074-84 [PMID: 11742984]
  45. EMBO J. 2002 Jul 15;21(14):3643-51 [PMID: 12110577]
  46. Science. 2002 Aug 2;297(5582):815-9 [PMID: 12098706]
  47. Cell. 1995 Jun 30;81(7):1003-12 [PMID: 7600569]
  48. Mol Gen Genet. 1996 Aug 27;252(1-2):101-14 [PMID: 8804409]
  49. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13096-101 [PMID: 8917550]
  50. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  51. EMBO J. 1998 Aug 10;17(5):1228-35 [PMID: 9482720]
  52. Science. 1998 Aug 7;281(5378):825-9 [PMID: 9694654]
  53. Genes Dev. 2005 Jan 15;19(2):234-41 [PMID: 15625191]
  54. Nat Rev Genet. 2005 Jul;6(7):544-56 [PMID: 15951747]
  55. Cell. 2005 Jul 29;122(2):235-46 [PMID: 16051148]
  56. Bioinformatics. 2005 Aug 15;21(16):3433-4 [PMID: 15955779]
  57. Genes Dev. 2006 Feb 1;20(3):297-306 [PMID: 16421276]
  58. FEMS Microbiol Lett. 2006 Apr;257(2):328-35 [PMID: 16553871]
  59. J Biol Rhythms. 2006 Jun;21(3):159-68 [PMID: 16731655]
  60. Genes Dev. 2006 Sep 15;20(18):2552-65 [PMID: 16980584]
  61. Eukaryot Cell. 2003 Apr;2(2):231-7 [PMID: 12684372]
  62. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5914-9 [PMID: 12714686]
  63. Chronobiol Int. 2003 Sep;20(5):741-74 [PMID: 14535352]
  64. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13597-602 [PMID: 14597725]
  65. J Biol Chem. 2004 Sep 3;279(36):37385-97 [PMID: 15231838]
  66. Science. 1989 Jan 20;243(4889):385-8 [PMID: 2563175]

MeSH Term

Amino Acid Sequence
Circadian Clocks
Circadian Rhythm
Fungal Proteins
Gene Expression Regulation, Fungal
Light
Molecular Sequence Data
Neurospora crassa
Protein Interaction Domains and Motifs
Sequence Alignment
Temperature

Chemicals

FRQ protein, Neurospora crassa
Fungal Proteins

Word Cloud

Created with Highcharts 10.0.0circadianfrqconfluensclockgenestwomolecularcrassafoundPyronemaPexpressionclocksknownNfrequencyfilamentousFRQpresenttranscriptionsubjectivemorningrhythmtemperatureclock-controlledtimeCircadianmorning-specificverifiedputativeManyorganismsuseadaptdailychangesenvironmentMajorinsightsmechanismsoscillatorsgainedstudiesmodelorganismNeurosporahoweverlittlecomponentsfungiimportantpartgenehomologscanSordariomycetesDothideomycetesLeotiomycetesEurotiomycetesRecentlyidentifiedhomologmemberearly-divergingPezizomycetelineageascomycetessharesmanyconserveddomainsHowevermorphologicalphenotypeshowingovertrhythmicityinvestigatewhetheranalyzedconstantdarknessoscillationpeakcompensatedidentifyadditionalperformedRNAsequencingpointseveningreversequantitativepolymerasechainreactionRT-qPCRfullcoursewhereasfiveevening-specificsynchronizedentrainedlightsummaryevidencethreemainpropertiesrhythmsfree-runningcompensationsuggestingrhythmicallyexpressedbasalascomyceteAnalysisRhythmsBasalFilamentousAscomycetelight-entrainment

Similar Articles

Cited By