Evolutionarily advanced ant farmers rear polyploid fungal crops.

P W Kooij, D K Aanen, M Schiøtt, J J Boomsma
Author Information
  1. P W Kooij: Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  2. D K Aanen: Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
  3. M Schiøtt: Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  4. J J Boomsma: Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Abstract

Innovative evolutionary developments are often related to gene or genome duplications. The crop fungi of attine fungus-growing ants are suspected to have enhanced genetic variation reminiscent of polyploidy, but this has never been quantified with cytological data and genetic markers. We estimated the number of nuclei per fungal cell for 42 symbionts reared by 14 species of Panamanian fungus-growing ants. This showed that domesticated symbionts of higher attine ants are polykaryotic with 7-17 nuclei per cell, whereas nonspecialized crops of lower attines are dikaryotic similar to most free-living basidiomycete fungi. We then investigated how putative higher genetic diversity is distributed across polykaryotic mycelia, using microsatellite loci and evaluating models assuming that all nuclei are either heterogeneously haploid or homogeneously polyploid. Genetic variation in the polykaryotic symbionts of the basal higher attine genera Trachymyrmex and Sericomyrmex was only slightly enhanced, but the evolutionarily derived crop fungi of Atta and Acromyrmex leaf-cutting ants had much higher genetic variation. Our opposite ploidy models indicated that the symbionts of Trachymyrmex and Sericomyrmex are likely to be lowly and facultatively polyploid (just over two haplotypes on average), whereas Atta and Acromyrmex symbionts are highly and obligatorily polyploid (ca. 5-7 haplotypes on average). This stepwise transition appears analogous to ploidy variation in plants and fungi domesticated by humans and in fungi domesticated by termites and plants, where gene or genome duplications were typically associated with selection for higher productivity, but allopolyploid chimerism was incompatible with sexual reproduction.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10702-6 [PMID: 16815974]
  2. Biotechniques. 1991 Apr;10(4):506-13 [PMID: 1867860]
  3. Mycologia. 2009 Mar-Apr;101(2):206-10 [PMID: 19397193]
  4. Science. 1998 Sep 25;281(5385):2034-8 [PMID: 9748164]
  5. Proc Biol Sci. 2004 Sep 7;271(1550):1777-82 [PMID: 15315892]
  6. Am Nat. 2013 Apr;181(4):571-82 [PMID: 23535621]
  7. Trans N Y Acad Sci. 1955 Jun;17(8):627-35 [PMID: 14396925]
  8. Evolution. 2010 Jul;64(7):2055-69 [PMID: 20067517]
  9. Fungal Biol. 2013 Apr;117(4):261-7 [PMID: 23622720]
  10. Nat Commun. 2014 Dec 01;5:5675 [PMID: 25435021]
  11. Proc Biol Sci. 2014 Oct 22;281(1793): [PMID: 25165765]
  12. Genetics. 1962 Jan;47:85-98 [PMID: 13889915]
  13. Proc Biol Sci. 2009 Jun 22;276(1665):2263-9 [PMID: 19324734]
  14. Genome Res. 2011 Aug;21(8):1339-48 [PMID: 21719571]
  15. Curr Opin Plant Biol. 2005 Apr;8(2):135-41 [PMID: 15752992]
  16. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 [PMID: 12386341]
  17. Am Nat. 2002 Oct;160 Suppl 4:S67-98 [PMID: 18707454]
  18. Plant Dis. 2013 Jul;97(7):856-872 [PMID: 30722573]
  19. Nature. 2001 Dec 13;414(6865):745-8 [PMID: 11742398]
  20. Science. 1994 Apr 15;264(5157):421-4 [PMID: 17836906]
  21. Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):940-3 [PMID: 18195358]
  22. Nat Rev Genet. 2005 Nov;6(11):836-46 [PMID: 16304599]
  23. Cytogenet Genome Res. 2013;140(2-4):256-69 [PMID: 23817224]
  24. PLoS Genet. 2014 Jan;10(1):e1004078 [PMID: 24415955]
  25. Proc Biol Sci. 2011 Oct 22;278(1721):3050-9 [PMID: 21389026]
  26. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  27. Proc Biol Sci. 2002 Aug 7;269(1500):1541-8 [PMID: 12184823]
  28. Curr Biol. 2011 Nov 8;21(21):R896-7 [PMID: 22075432]
  29. New Phytol. 2012 Oct;196(1):29-48 [PMID: 22889076]
  30. BMC Evol Biol. 2014 Jun 05;14:121 [PMID: 24902958]
  31. Nature. 2004 Feb 19;427(6976):733-7 [PMID: 14973485]
  32. Nature. 2005 Jan 13;433(7022):160-3 [PMID: 15650740]
  33. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):250-5 [PMID: 10618404]
  34. Annu Rev Genet. 2000;34:401-437 [PMID: 11092833]
  35. Fungal Genet Biol. 2011 Jun;48(6):555-60 [PMID: 21354318]
  36. Fungal Biol. 2011 Oct;115(10):1077-91 [PMID: 21944219]
  37. Proc Biol Sci. 2004 Jun 22;271(1545):1235-41 [PMID: 15306347]
  38. Naturwissenschaften. 2011 Aug;98(8):643-9 [PMID: 21656003]
  39. Mol Ecol Resour. 2009 Sep;9(5):1391-4 [PMID: 21564916]
  40. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 21;368(1613):20120050 [PMID: 23339241]
  41. Trends Genet. 1993 Dec;9(12):408-12 [PMID: 8122307]
  42. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40 [PMID: 18362345]
  43. Arch Mikrobiol. 1971;80(1):19-31 [PMID: 4942443]
  44. Trends Biotechnol. 2000 Jun;18(6):233-42 [PMID: 10802558]
  45. Science. 2009 Nov 20;326(5956):1103-6 [PMID: 19965427]
  46. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9 [PMID: 19667210]
  47. Am Nat. 2010 Jun;175(6):E126-33 [PMID: 20415533]
  48. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):583-7 [PMID: 23267060]
  49. Mycol Res. 2005 Mar;109(Pt 3):314-8 [PMID: 15912948]
  50. Biosci Biotechnol Biochem. 2010;74(11):2327-9 [PMID: 21071861]
  51. Mycologia. 2003 May-Jun;95(3):442-56 [PMID: 21156633]
  52. PLoS One. 2014 Apr 09;9(4):e94284 [PMID: 24718261]

Grants

  1. 323085/European Research Council

MeSH Term

Animals
Ants
Behavior, Animal
Biological Evolution
DNA, Fungal
DNA, Intergenic
Fungi
Genome, Fungal
Phylogeny
Polyploidy
Symbiosis

Chemicals

DNA, Fungal
DNA, Intergenic

Word Cloud

Created with Highcharts 10.0.0fungiantssymbiontshighergeneticvariationpolyploidattinefungus-growingnucleidomesticatedpolykaryoticgenegenomeduplicationscropenhancedperfungalcellwhereascropsmodelsTrachymyrmexSericomyrmexAttaAcromyrmexploidyhaplotypesaverageplantsInnovativeevolutionarydevelopmentsoftenrelatedsuspectedreminiscentpolyploidyneverquantifiedcytologicaldatamarkersestimatednumber42reared14speciesPanamanianshowed7-17nonspecializedlowerattinesdikaryoticsimilarfree-livingbasidiomyceteinvestigatedputativediversitydistributedacrossmyceliausingmicrosatellitelocievaluatingassumingeitherheterogeneouslyhaploidhomogeneouslyGeneticbasalgeneraslightlyevolutionarilyderivedleaf-cuttingmuchoppositeindicatedlikelylowlyfacultativelyjusttwohighlyobligatorilyca5-7stepwisetransitionappearsanalogoushumanstermitestypicallyassociatedselectionproductivityallopolyploidchimerismincompatiblesexualreproductionEvolutionarilyadvancedantfarmersrearAttiniBasidiomycotaLeucoagaricuscell-nucleico-evolutionmutualism

Similar Articles

Cited By