Intravascular pressure enhances the abundance of functional Kv1.5 channels at the surface of arterial smooth muscle cells.

Michael W Kidd, M Dennis Leo, John P Bannister, Jonathan H Jaggar
Author Information
  1. Michael W Kidd: Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
  2. M Dennis Leo: Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
  3. John P Bannister: Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
  4. Jonathan H Jaggar: Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA. jjaggar@uthsc.edu.

Abstract

Voltage-dependent potassium (K(v)) channels are present in various cell types, including smooth muscle cells (myocytes) of resistance-sized arteries that control systemic blood pressure and regional organ blood flow. Intravascular pressure depolarizes arterial myocytes, stimulating calcium (Ca(2+)) influx through voltage-dependent Ca(2+) (Ca(v)) channels that results in vasoconstriction and also K(+) efflux through K(v) channels that oppose vasoconstriction. We hypothesized that pressure-induced depolarization may not only increase the open probability of plasma membrane-resident K(v) channels but also increase the abundance of these channels at the surface of arterial myocytes to limit vasoconstriction. We found that K(v)1.5 and K(v)2.1 proteins were abundant in the myocytes of resistance-sized mesenteric arteries. K(v)1.5, but not K(v)2.1, continuously recycled between the intracellular compartment and the plasma membrane in contractile arterial myocytes. Using ex vivo preparations of intact arteries, we showed that physiological intravascular pressure through membrane depolarization or membrane depolarization in the absence of pressure inhibited the degradation of internalized K(v)1.5 and increased recycling of K(v)1.5 to the plasma membrane. Accordingly, by stimulating the activity of Ca(v)1.2, membrane depolarization increased whole-cell K(v)1.5 current density in myocytes and K(v)1.5 channel activity in pressurized arteries. In contrast, the total amount and cell surface abundance of K(v)2.1 were independent of intravascular pressure or membrane potential. Thus, our data indicate that intravascular pressure-induced membrane depolarization selectively increased K(v)1.5 surface abundance to increase K(v) currents in arterial myocytes, which would limit vasoconstriction.

References

  1. Circ Res. 2005 Feb 4;96(2):216-24 [PMID: 15618540]
  2. J Physiol. 2003 Sep 15;551(Pt 3):751-63 [PMID: 12815189]
  3. Science. 1995 Oct 27;270(5236):633-7 [PMID: 7570021]
  4. Br J Pharmacol. 2007 Jul;151(6):758-70 [PMID: 17519950]
  5. Physiol Rev. 1999 Apr;79(2):387-423 [PMID: 10221985]
  6. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):E3955-64 [PMID: 24065831]
  7. Circ Res. 2009 Nov 6;105(10):948-55 [PMID: 19797702]
  8. Mol Pharmacol. 2005 Nov;68(5):1254-70 [PMID: 16099841]
  9. Am J Physiol. 1998 Jun;274(6 Pt 1):C1755-61 [PMID: 9611142]
  10. J Biol Chem. 2002 Aug 9;277(32):28545-53 [PMID: 12032157]
  11. Pflugers Arch. 2015 Feb;467(2):329-40 [PMID: 24793048]
  12. J Pharmacol Exp Ther. 2005 Dec;315(3):1362-7 [PMID: 16157659]
  13. Hypertension. 2012 Oct;60(4):1006-15 [PMID: 22949532]
  14. J Physiol. 2008 Oct 15;586(20):4793-813 [PMID: 18755741]
  15. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2361-6 [PMID: 24464482]
  16. J Pharmacol Exp Ther. 2006 Jun;317(3):1054-63 [PMID: 16522807]
  17. Circ Res. 1995 Aug;77(2):370-8 [PMID: 7542182]
  18. Am J Physiol Heart Circ Physiol. 2001 Sep;281(3):H1057-65 [PMID: 11514271]
  19. J Physiol. 2004 Apr 1;556(Pt 1):29-42 [PMID: 14742730]
  20. Pharmacol Rev. 2005 Dec;57(4):473-508 [PMID: 16382104]
  21. J Biol Chem. 2007 Oct 5;282(40):29211-21 [PMID: 17699517]
  22. Exp Biol Med (Maywood). 2010 Mar;235(3):278-89 [PMID: 20404045]
  23. Am J Physiol. 1995 Apr;268(4 Pt 1):C799-822 [PMID: 7733230]
  24. Cardiovasc Res. 2011 Feb 1;89(2):282-9 [PMID: 20884640]
  25. J Physiol. 1998 Apr 1;508 ( Pt 1):199-209 [PMID: 9490839]
  26. Am J Physiol Cell Physiol. 2006 Aug;291(2):C348-56 [PMID: 16571867]
  27. Circ Res. 2006 Apr 28;98(8):1048-54 [PMID: 16556866]
  28. J Biol Chem. 2007 Oct 5;282(40):29612-20 [PMID: 17673464]
  29. J Cell Biol. 1997 May 19;137(4):825-34 [PMID: 9151685]
  30. Am J Physiol Cell Physiol. 2010 Sep;299(3):C682-94 [PMID: 20610768]
  31. J Physiol. 2010 Nov 15;588(Pt 22):4519-37 [PMID: 20876197]
  32. Int J Biochem Cell Biol. 2004 Dec;36(12):2435-44 [PMID: 15325583]
  33. Mol Pharmacol. 2004 Jun;65(6):1364-74 [PMID: 15155830]
  34. Circ Res. 2012 Sep 14;111(7):842-53 [PMID: 22843785]
  35. Life Sci. 2002 Aug 9;71(12):1465-73 [PMID: 12127166]
  36. Circ Res. 2006 Nov 24;99(11):1252-60 [PMID: 17068294]
  37. PLoS One. 2014 Jul 31;9(7):e103655 [PMID: 25077630]
  38. Am J Physiol. 1999 Nov;277(5 Pt 1):G1055-63 [PMID: 10564112]
  39. Arterioscler Thromb Vasc Biol. 2010 Jun;30(6):1203-11 [PMID: 20299686]

Grants

  1. R01 HL094378/NHLBI NIH HHS
  2. HL67061/NHLBI NIH HHS
  3. R01 HL067061/NHLBI NIH HHS
  4. R01 HL110347/NHLBI NIH HHS
  5. 094378/PHS HHS
  6. HL110347/NHLBI NIH HHS

MeSH Term

Animals
Blotting, Western
Cell Membrane
Cells, Cultured
HEK293 Cells
Humans
In Vitro Techniques
Kv1.5 Potassium Channel
Male
Membrane Potentials
Mesenteric Arteries
Myocytes, Smooth Muscle
Patch-Clamp Techniques
Rats, Sprague-Dawley
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction
Vasoconstriction

Chemicals

Kv1.5 Potassium Channel