New perspectives for Rashba spin-orbit coupling.

A Manchon, H C Koo, J Nitta, S M Frolov, R A Duine
Author Information
  1. A Manchon: King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal 23955-6900, Saudi Arabia. ORCID
  2. H C Koo: Center for Spintronics, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbukgu, Seoul 136-791, Korea.
  3. J Nitta: Department of Materials Science, Tohoku University, 980-8579 Sendai, Miyagi, Japan.
  4. S M Frolov: Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
  5. R A Duine: Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands.

Abstract

In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

References

  1. Science. 2007 Nov 2;318(5851):766-70 [PMID: 17885096]
  2. Nat Nanotechnol. 2012 Aug;7(8):494-8 [PMID: 22706698]
  3. Nat Nanotechnol. 2014 Mar;9(3):211-7 [PMID: 24584275]
  4. Science. 2014 Oct 31;346(6209):602-7 [PMID: 25278507]
  5. Nature. 2005 Nov 10;438(7065):201-4 [PMID: 16281031]
  6. Science. 2003 Sep 5;301(5638):1348-51 [PMID: 12907808]
  7. Phys Rev Lett. 2014 Jun 20;112(24):246402 [PMID: 24996097]
  8. Science. 2014 Feb 21;343(6173):864-7 [PMID: 24436183]
  9. Nat Nanotechnol. 2012 Aug;7(8):490-3 [PMID: 22706701]
  10. Phys Rev Lett. 2005 Feb 4;94(4):047204 [PMID: 15783592]
  11. Phys Rev Lett. 2006 Nov 10;97(19):196803 [PMID: 17155650]
  12. Nat Nanotechnol. 2014 Oct;9(10):794-807 [PMID: 25286274]
  13. Science. 2013 Jul 5;341(6141):59-62 [PMID: 23828937]
  14. Phys Rev Lett. 2011 Mar 11;106(10):106802 [PMID: 21469822]
  15. Phys Rev Lett. 1988 Oct 31;61(18):2015-2018 [PMID: 10038961]
  16. Phys Rev Lett. 2010 Oct 22;105(17):177002 [PMID: 21231073]
  17. Phys Rev Lett. 2007 May 4;98(18):186807 [PMID: 17501597]
  18. Phys Rev Lett. 2014 Sep 12;113(11):116403 [PMID: 25259991]
  19. Nature. 2014 Jul 24;511(7510):449-51 [PMID: 25056062]
  20. Science. 2010 Jul 16;329(5989):297-9 [PMID: 20647460]
  21. Phys Rev Lett. 2007 Dec 7;99(23):236809 [PMID: 18233399]
  22. Science. 2009 Jul 17;325(5938):294-7 [PMID: 19608911]
  23. Nat Commun. 2012;3:1082 [PMID: 23011136]
  24. Phys Rev Lett. 2012 Aug 24;109(8):085302 [PMID: 23002754]
  25. Phys Rev Lett. 2012 Aug 24;109(8):085303 [PMID: 23002755]
  26. Nat Nanotechnol. 2009 Nov;4(11):759-64 [PMID: 19893512]
  27. Science. 2013 Jun 21;340(6139):1427-30 [PMID: 23686343]
  28. Science. 2014 May 16;344(6185):725-8 [PMID: 24790028]
  29. Phys Rev Lett. 2012 Sep 14;109(11):115301 [PMID: 23005641]
  30. Nature. 2014 Nov 13;515(7526):237-40 [PMID: 25391960]
  31. Science. 2012 May 25;336(6084):1003-7 [PMID: 22499805]
  32. Nature. 2014 Jan 23;505(7484):528-32 [PMID: 24362569]
  33. Nat Nanotechnol. 2013 Dec;8(12):899-911 [PMID: 24302027]
  34. Phys Rev Lett. 2005 Nov 25;95(22):226801 [PMID: 16384250]
  35. Phys Rev Lett. 2013 Feb 8;110(6):066806 [PMID: 23432291]
  36. Science. 2012 Dec 21;338(6114):1604-6 [PMID: 23258892]
  37. Phys Rev Lett. 2008 Mar 7;100(9):096407 [PMID: 18352737]
  38. Phys Rev Lett. 2003 Jun 27;90(25 Pt 1):256601 [PMID: 12857151]
  39. Nat Mater. 2011 Jun 19;10(7):521-6 [PMID: 21685900]
  40. Phys Rev Lett. 2011 Aug 26;107(9):096802 [PMID: 21929260]
  41. Science. 2012 May 4;336(6081):555-8 [PMID: 22556245]
  42. Phys Rev Lett. 2014 Oct 10;113(15):157201 [PMID: 25375735]
  43. Science. 2014 Jun 27;344(6191):1489-92 [PMID: 24970080]
  44. Nature. 2011 Aug 11;476(7359):189-93 [PMID: 21804568]
  45. Phys Rev Lett. 1996 Oct 14;77(16):3419-3422 [PMID: 10062215]
  46. Nature. 2011 Mar 3;471(7336):83-6 [PMID: 21368828]
  47. Nature. 2010 Dec 23;468(7327):1084-7 [PMID: 21179164]
  48. Phys Rev Lett. 2011 May 13;106(19):197202 [PMID: 21668195]
  49. Nat Nanotechnol. 2013 Aug;8(8):587-93 [PMID: 23892985]
  50. Phys Rev Lett. 2014 Mar 21;112(11):116404 [PMID: 24702394]
  51. Phys Rev Lett. 2012 Nov 16;109(20):205303 [PMID: 23215500]
  52. Phys Rev Lett. 2011 Dec 16;107(25):255301 [PMID: 22243087]
  53. Phys Rev Lett. 2003 Apr 11;90(14):146801 [PMID: 12731937]
  54. Phys Rev Lett. 2004 Mar 26;92(12):126603 [PMID: 15089695]
  55. Nat Nanotechnol. 2014 Oct;9(10):851-7 [PMID: 25194947]
  56. Nat Mater. 2011 May;10(5):347-51 [PMID: 21399629]
  57. Science. 2006 Dec 15;314(5806):1757-61 [PMID: 17170299]
  58. Nature. 2008 Jun 19;453(7198):1043-9 [PMID: 18563155]
  59. Phys Rev B Condens Matter. 1996 Oct 1;54(13):9353-9358 [PMID: 9984672]
  60. Nat Nanotechnol. 2014 Sep;9(9):703-9 [PMID: 25017310]
  61. Nat Mater. 2010 Mar;9(3):230-4 [PMID: 20062047]
  62. Nature. 2006 Jul 13;442(7099):176-9 [PMID: 16838016]
  63. Phys Rev Lett. 2011 Sep 23;107(13):136603 [PMID: 22026882]
  64. Nature. 2009 Aug 27;460(7259):1101-5 [PMID: 19620959]
  65. Phys Rev Lett. 2012 Feb 10;108(6):066804 [PMID: 22401103]
  66. Science. 2015 Jan 16;347(6219):294-8 [PMID: 25593189]
  67. Nature. 2009 Aug 27;460(7259):1106-9 [PMID: 19668187]
  68. Phys Rev Lett. 2012 Aug 31;109(9):095302 [PMID: 23002844]
  69. Nature. 2012 Oct 18;490(7420):380-3 [PMID: 23075988]
  70. Nat Commun. 2014 Sep 01;5:4748 [PMID: 25175340]
  71. Phys Rev Lett. 2010 Apr 2;104(13):137203 [PMID: 20481909]
  72. Phys Rev Lett. 2012 May 18;108(20):206601 [PMID: 23003162]
  73. Phys Rev Lett. 2004 Oct 22;93(17):176601 [PMID: 15525098]
  74. Nat Mater. 2014 Jul;13(7):699-704 [PMID: 24776536]
  75. Phys Rev Lett. 2006 Dec 8;97(23):236601 [PMID: 17280220]
  76. Science. 2004 Dec 10;306(5703):1910-3 [PMID: 15539563]
  77. Science. 2010 Dec 24;330(6012):1801-4 [PMID: 21205664]
  78. Science. 2012 Jan 20;335(6066):314-7 [PMID: 22157082]
  79. Nature. 2009 Apr 16;458(7240):868-71 [PMID: 19370029]
  80. Science. 2014 Oct 24;346(6208):448-51 [PMID: 25342798]
  81. Science. 2009 Sep 18;325(5947):1515-8 [PMID: 19762637]
  82. Nat Mater. 2012 Apr 23;11(5):409-16 [PMID: 22522641]
  83. Phys Rev Lett. 2012 May 11;108(19):196802 [PMID: 23003071]
  84. Phys Rev Lett. 2006 Feb 24;96(7):076804 [PMID: 16606124]
  85. Nat Commun. 2013;4:2944 [PMID: 24343336]
  86. Phys Rev Lett. 2010 Aug 13;105(7):077001 [PMID: 20868069]
  87. Nat Commun. 2012;3:1232 [PMID: 23187632]
  88. Phys Rev Lett. 2012 Aug 31;109(9):095301 [PMID: 23002843]
  89. Nat Mater. 2012 Apr 23;11(5):382-90 [PMID: 22522638]
  90. Science. 2011 Apr 15;332(6027):328-30 [PMID: 21493852]
  91. Phys Rev Lett. 2007 Aug 3;99(5):056601 [PMID: 17930774]
  92. Science. 2007 Nov 30;318(5855):1430-3 [PMID: 17975030]
  93. Nature. 2009 Apr 2;458(7238):610-3 [PMID: 19340077]
  94. Nat Mater. 2007 Nov;6(11):813-23 [PMID: 17972936]
  95. Phys Rev Lett. 2009 Jan 30;102(4):046402 [PMID: 19257446]

Word Cloud

Created with Highcharts 10.0.0Rashbaspin-orbitcouplingspinmaterialselectronsemiconductorspastrealizations1984Bychkovintroducedsimpleformexplainpeculiaritiesresonancetwo-dimensional30yearsinspiredvastnumberpredictionsdiscoveriesinnovativeconceptsfarbeyonddecadeparticularlycreativemanipulatingorientationmovingelectronsspacecontrollingtrajectoriesusingsteeringwheeldiscoverynewtopologicalclassesprogressreinvigoratedinterestphysicistsscientistsdevelopmentinversionasymmetricstructuresranginglayeredgraphene-likecoldatomsReviewdiscussesrelevantrecentongoingphysicscondensedmatterNewperspectives

Similar Articles

Cited By