Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites.

Aurélien Saghaï, Yvan Zivanovic, Nina Zeyen, David Moreira, Karim Benzerara, Philippe Deschamps, Paola Bertolino, Marie Ragon, Rosaluz Tavera, Ana I López-Archilla, Purificación López-García
Author Information
  1. Aurélien Saghaï: Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France.
  2. Yvan Zivanovic: Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud Orsay, France.
  3. Nina Zeyen: Institut de Minéralogie et de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Université Pierre et Marie Curie Paris, France.
  4. David Moreira: Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France.
  5. Karim Benzerara: Institut de Minéralogie et de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Université Pierre et Marie Curie Paris, France.
  6. Philippe Deschamps: Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France.
  7. Paola Bertolino: Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France.
  8. Marie Ragon: Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France.
  9. Rosaluz Tavera: Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México Mexico City, Mexico.
  10. Ana I López-Archilla: Departamento de Ecología, Universidad Autónoma de Madrid Madrid, Spain.
  11. Purificación López-García: Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France.

Abstract

Cyanobacteria are thought to play a key role in carbonate formation due to their metabolic activity, but other organisms carrying out oxygenic photosynthesis (photosynthetic eukaryotes) or other metabolisms (e.g., anoxygenic photosynthesis, sulfate reduction), may also contribute to carbonate formation. To obtain more quantitative information than that provided by more classical PCR-dependent methods, we studied the microbial diversity of microbialites from the Alchichica crater lake (Mexico) by mining for 16S/18S rRNA genes in metagenomes obtained by direct sequencing of environmental DNA. We studied samples collected at the Western (AL-W) and Northern (AL-N) shores of the lake and, at the latter site, along a depth gradient (1, 5, 10, and 15 m depth). The associated microbial communities were mainly composed of bacteria, most of which seemed heterotrophic, whereas archaea were negligible. Eukaryotes composed a relatively minor fraction dominated by photosynthetic lineages, diatoms in AL-W, influenced by Si-rich seepage waters, and green algae in AL-N samples. Members of the Gammaproteobacteria and Alphaproteobacteria classes of Proteobacteria, Cyanobacteria, and Bacteroidetes were the most abundant bacterial taxa, followed by Planctomycetes, Deltaproteobacteria (Proteobacteria), Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi. Community composition varied among sites and with depth. Although cyanobacteria were the most important bacterial group contributing to the carbonate precipitation potential, photosynthetic eukaryotes, anoxygenic photosynthesizers and sulfate reducers were also very abundant. Cyanobacteria affiliated to Pleurocapsales largely increased with depth. Scanning electron microscopy (SEM) observations showed considerable areas of aragonite-encrusted Pleurocapsa-like cyanobacteria at microscale. Multivariate statistical analyses showed a strong positive correlation of Pleurocapsales and Chroococcales with aragonite formation at macroscale, and suggest a potential causal link. Despite the previous identification of intracellularly calcifying cyanobacteria in Alchichica microbialites, most carbonate precipitation seems extracellular in this system.

Keywords

References

  1. ISME J. 2013 Oct;7(10):1997-2009 [PMID: 23804151]
  2. Genome Inform. 2009 Oct;23(1):205-11 [PMID: 20180275]
  3. Naturwissenschaften. 2006 Mar;93(3):119-26 [PMID: 16365738]
  4. Syst Appl Microbiol. 2010 Jun;33(4):209-21 [PMID: 20409657]
  5. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  6. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1327-9 [PMID: 16593910]
  7. Science. 2012 Apr 27;336(6080):427-8 [PMID: 22539710]
  8. Science. 1971 Nov 19;174(4011):825-7 [PMID: 17759393]
  9. Photosynth Res. 2011 Jan;107(1):11-36 [PMID: 20882345]
  10. Nature. 2000 Aug 31;406(6799):989-92 [PMID: 10984051]
  11. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  12. J Colloid Interface Sci. 2011 Aug 1;360(1):100-9 [PMID: 21549386]
  13. Trends Microbiol. 2005 Sep;13(9):429-38 [PMID: 16087339]
  14. Science. 1983 Jan 28;219(4583):385-6 [PMID: 17815316]
  15. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):10933-8 [PMID: 25009182]
  16. Extremophiles. 2005 Aug;9(4):263-74 [PMID: 15959626]
  17. Extremophiles. 2014 Mar;18(2):311-29 [PMID: 24442191]
  18. Adv Exp Med Biol. 2007;607:1-19 [PMID: 17977455]
  19. Nature. 2004 Sep 30;431(7008):549-52 [PMID: 15457255]
  20. Appl Environ Microbiol. 1998 Aug;64(8):2943-51 [PMID: 9687455]
  21. Environ Microbiol. 2003 Jul;5(7):618-27 [PMID: 12823194]
  22. Appl Environ Microbiol. 2001 Apr;67(4):1902-10 [PMID: 11282648]
  23. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9830-4 [PMID: 23716649]
  24. BMC Microbiol. 2012 Aug 15;12:177 [PMID: 22894826]
  25. Geobiology. 2007 Jun;5(2):119-126 [PMID: 20890383]
  26. Environ Microbiol. 2004 Oct;6(10):1096-101 [PMID: 15344935]
  27. Appl Environ Microbiol. 2005 Aug;71(8):4822-32 [PMID: 16085880]
  28. PLoS One. 2012;7(5):e38229 [PMID: 22662280]
  29. Appl Environ Microbiol. 1999 Oct;65(10):4659-65 [PMID: 10508103]
  30. Pac Symp Biocomput. 2011;:165-76 [PMID: 21121044]
  31. Science. 2002 Aug 9;297(5583):1013-5 [PMID: 12169733]
  32. Life (Basel). 2013 May 22;3(2):346-62 [PMID: 25369746]
  33. PLoS One. 2012;7(8):e43093 [PMID: 22905208]
  34. Front Microbiol. 2014 Jul 08;5:331 [PMID: 25071744]
  35. Genome Res. 2011 Mar;21(3):494-504 [PMID: 21212162]
  36. Appl Environ Microbiol. 2005 Dec;71(12):8966-9 [PMID: 16332901]
  37. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  38. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  39. Arch Microbiol. 1987;147:213-20 [PMID: 11542090]
  40. PLoS One. 2013 Sep 12;8(9):e74371 [PMID: 24069303]
  41. Nature. 2006 Jun 8;441(7094):714-8 [PMID: 16760969]
  42. Science. 1974 Jun 7;184(4141):1083-5 [PMID: 17736194]
  43. Nucleic Acids Res. 2007;35(18):e120 [PMID: 17881377]
  44. Geobiology. 2013 Sep;11(5):485-97 [PMID: 23889904]
  45. Environ Microbiol. 2009 Jan;11(1):16-34 [PMID: 18764874]
  46. ISME J. 2009 May;3(5):573-87 [PMID: 19148145]
  47. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9548-55 [PMID: 19515817]
  48. ISME J. 2009 Jul;3(7):792-6 [PMID: 19340085]
  49. Geobiology. 2010 Sep;8(4):337-54 [PMID: 20491947]
  50. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  51. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9440-5 [PMID: 16772379]
  52. PLoS One. 2013;8(1):e53497 [PMID: 23308236]
  53. Appl Environ Microbiol. 2008 Dec;74(23):7174-82 [PMID: 18849462]
  54. Science. 2012 Apr 27;336(6080):459-62 [PMID: 22539718]
  55. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13624-9 [PMID: 21810989]
  56. Geobiology. 2012 Nov;10(6):518-30 [PMID: 22925453]
  57. Environ Microbiol. 2014 Sep;16(9):2659-71 [PMID: 24102695]
  58. Nucleic Acids Res. 2013 Jan;41(Database issue):D597-604 [PMID: 23193267]
  59. Geobiology. 2009 Jan;7(1):82-96 [PMID: 19200148]
  60. PLoS One. 2011;6(12):e28767 [PMID: 22194908]
  61. Trends Microbiol. 2006 Nov;14(11):488-96 [PMID: 16997562]
  62. ISME J. 2009 Apr;3(4):383-96 [PMID: 19092864]
  63. Nature. 2000 Oct 5;407(6804):626-9 [PMID: 11034210]
  64. Nat Rev Microbiol. 2015 Jan;13(1):13-27 [PMID: 25435307]
  65. Environ Microbiol. 2013 Jun;15(6):1882-99 [PMID: 23387867]

Grants

  1. 322669/European Research Council

Word Cloud

Created with Highcharts 10.0.0carbonatedepthcyanobacteriaCyanobacteriaformationphotosynthesisphotosyntheticanoxygenicmicrobialitesprecipitationeukaryotessulfatealsostudiedmicrobialdiversityAlchichicalakesamplesAL-WAL-NcomposedlineagesdiatomsgreenalgaeProteobacteriaabundantbacterialpotentialPleurocapsalesshowedanalysessuggestthoughtplaykeyroleduemetabolicactivityorganismscarryingoxygenicmetabolismsegreductionmaycontributeobtainquantitativeinformationprovidedclassicalPCR-dependentmethodscraterMexicomining16S/18SrRNAgenesmetagenomesobtaineddirectsequencingenvironmentalDNAcollectedWesternNorthernshoreslattersitealonggradient151015massociatedcommunitiesmainlybacteriaseemedheterotrophicwhereasarchaeanegligibleEukaryotesrelativelyminorfractiondominatedinfluencedSi-richseepagewatersMembersGammaproteobacteriaAlphaproteobacteriaclassesBacteroidetestaxafollowedPlanctomycetesDeltaproteobacteriaVerrucomicrobiaActinobacteriaFirmicutesChloroflexiCommunitycompositionvariedamongsitesAlthoughimportantgroupcontributingphotosynthesizersreducersaffiliatedlargelyincreasedScanningelectronmicroscopySEMobservationsconsiderableareasaragonite-encrustedPleurocapsa-likemicroscaleMultivariatestatisticalstrongpositivecorrelationChroococcalesaragonitemacroscalecausallinkDespitepreviousidentificationintracellularlycalcifyingseemsextracellularsystemMetagenome-basedsignificantcontributionnon-cyanobacterialmodernbiomineralizationmetagenomicsstromatolitesulfate-reduction

Similar Articles

Cited By