Regulation of Cholesterol Homeostasis by Hedgehog Signaling in Osteoarthritic Cartilage.

Shabana Amanda Ali, Mushriq Al-Jazrawe, Henry Ma, Heather Whetstone, Raymond Poon, Sarah Farr, Mark Naples, Khosrow Adeli, Benjamin A Alman
Author Information
  1. Shabana Amanda Ali: University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada.
  2. Mushriq Al-Jazrawe: University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada.
  3. Henry Ma: University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada.
  4. Heather Whetstone: Hospital for Sick Children, Toronto, Ontario, Canada.
  5. Raymond Poon: Hospital for Sick Children, Toronto, Ontario, Canada.
  6. Sarah Farr: University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada.
  7. Mark Naples: Hospital for Sick Children, Toronto, Ontario, Canada.
  8. Khosrow Adeli: University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada.
  9. Benjamin A Alman: Duke University, Durham, North Carolina.

Abstract

OBJECTIVE: With no effective therapies to attenuate cartilage degeneration in osteoarthritis (OA), the result is pain and disability. Activation of hedgehog (HH) signaling causes changes related to the progression of OA, with higher levels of Gli-mediated transcriptional activation associated with increased disease severity. To elucidate the mechanism through which this occurs, this study sought to identify genes regulated by HH signaling in human OA chondrocytes.
METHODS: Using human OA cartilage samples, microarray analyses were performed to detect changes in gene expression when the HH pathway was modulated. Results were analyzed for differentially expressed genes, grouped into functional networks, and validated in independent samples. To investigate the effects of chondrocyte-specific sterol accumulation, we generated mice lacking Insig1 and Insig2, which are major negative regulators of Cholesterol homeostasis, under Col2a1 regulatory elements.
RESULTS: HH signaling was found to regulate genes that govern Cholesterol homeostasis, and this led to alterations in Cholesterol accumulation in chondrocytes. A higher level of Gli-mediated transcription resulted in accumulation of intracellular Cholesterol. In genetically modified mice, chondrocyte-specific Cholesterol accumulation was associated with an OA phenotype. Reducing Cholesterol accumulation attenuated the severity of OA in mice in vivo and decreased the expression of proteases in human OA cartilage in vitro.
CONCLUSION: HH signaling regulates Cholesterol homeostasis in chondrocytes, and intracellular Cholesterol accumulation contributes to the severity of OA. Our findings have therapeutic implications, since reduction of HH signaling reversed Cholesterol accumulation and statin treatment attenuated cartilage degeneration.

References

  1. J Immunol. 2003 Feb 1;170(3):1524-30 [PMID: 12538717]
  2. Nat Med. 2009 Dec;15(12):1421-5 [PMID: 19915594]
  3. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32 [PMID: 14512514]
  4. Nat Genet. 2002 Mar;30(3):306-10 [PMID: 11850620]
  5. Anal Biochem. 2012 Oct 1;429(1):39-41 [PMID: 22776092]
  6. Nat Clin Pract Rheumatol. 2007 Jul;3(7):391-9 [PMID: 17599073]
  7. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4616-21 [PMID: 12679522]
  8. PLoS Genet. 2011 Sep;7(9):e1002224 [PMID: 21912524]
  9. Int J Mol Sci. 2013;14(10):20793-808 [PMID: 24135873]
  10. Ann Rheum Dis. 2010 Dec;69(12):2189-98 [PMID: 20693272]
  11. Hum Mol Genet. 2003 May 15;12(10):1187-98 [PMID: 12719383]
  12. J Clin Invest. 2005 Sep;115(9):2489-98 [PMID: 16100574]
  13. Nature. 1996 Oct 3;383(6599):407-13 [PMID: 8837770]
  14. Joint Bone Spine. 2011 Jan;78(1):31-4 [PMID: 20471888]
  15. Nature. 2014 Sep 25;513(7519):507-11 [PMID: 25231866]
  16. Development. 2008 Jun;135(11):1947-56 [PMID: 18434416]
  17. J Orthop Res. 2010 Jan;28(1):110-5 [PMID: 19623662]
  18. Arthritis Res Ther. 2014;16(1):R11 [PMID: 24428864]
  19. J Bone Joint Surg Am. 2003;85-A Suppl 2:45-57 [PMID: 12721345]
  20. Saudi Med J. 2003 Jul;24(7):745-7 [PMID: 12883606]
  21. J Bone Miner Res. 1987 Dec;2(6):595-610 [PMID: 3455637]
  22. J Clin Invest. 1998 Apr 15;101(8):1596-603 [PMID: 9541489]
  23. Osteoarthritis Cartilage. 2010 Oct;18 Suppl 3:S17-23 [PMID: 20864019]
  24. PLoS One. 2012;7(2):e32356 [PMID: 22384228]
  25. J Biol Chem. 2007 Mar 23;282(12):8959-68 [PMID: 17200122]
  26. J Clin Invest. 2006 Sep;116(9):2356-65 [PMID: 16955138]
  27. J Anat. 2009 Feb;214(2):197-207 [PMID: 19207981]
  28. J Cell Mol Med. 2009 Sep;13(9B):3497-516 [PMID: 20196782]
  29. Dev Dyn. 2000 Jun;218(2):394-400 [PMID: 10842365]
  30. Trends Genet. 2002 Apr;18(4):193-201 [PMID: 11932020]
  31. Cell. 1997 May 2;89(3):331-40 [PMID: 9150132]
  32. PLoS One. 2012;7(5):e35753 [PMID: 22662110]
  33. Prog Lipid Res. 2008 Nov;47(6):391-404 [PMID: 18502209]
  34. Ann Rheum Dis. 2012 May;71(5):642-7 [PMID: 21989540]
  35. Dev Cell. 2008 Dec;15(6):801-12 [PMID: 19081070]
  36. J Bone Joint Surg Am. 1971 Apr;53(3):523-37 [PMID: 5580011]
  37. Nat Rev Mol Cell Biol. 2008 Jun;9(6):437-45 [PMID: 18500255]
  38. J Gen Intern Med. 2013 Jul;28(7):943-9 [PMID: 23471638]
  39. Genesis. 2000 Feb;26(2):145-6 [PMID: 10686612]
  40. Osteoarthritis Cartilage. 2010 Apr;18(4):581-92 [PMID: 20060954]
  41. Ann Rheum Dis. 2014 May;73(5):921-7 [PMID: 23625977]
  42. J Rheumatol. 1998 Sep;25(9):1827-32 [PMID: 9733467]
  43. Science. 1996 Aug 2;273(5275):613-22 [PMID: 8662546]
  44. Nature. 2005 Mar 31;434(7033):644-8 [PMID: 15800624]
  45. Development. 1997 Jan;124(1):113-23 [PMID: 9006072]
  46. Nat Protoc. 2008;3(8):1253-60 [PMID: 18714293]
  47. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8408-13 [PMID: 16707575]
  48. J Clin Invest. 2002 Sep;110(5):591-6 [PMID: 12208857]
  49. Semin Arthritis Rheum. 1993 Oct;23(2):79-89 [PMID: 8266111]
  50. Pathobiol Aging Age Relat Dis. 2012 May 9;2(2012):null [PMID: 22662293]

Grants

  1. R01 AR066765/NIAMS NIH HHS
  2. MOP-106587/Canadian Institutes of Health Research
  3. MOP-115092/Canadian Institutes of Health Research
  4. R01-AR-066765/NIAMS NIH HHS

MeSH Term

ADAM Proteins
ADAMTS5 Protein
Animals
Anticholesteremic Agents
Blotting, Western
Cartilage, Articular
Cholesterol
Chondrocytes
Collagen Type II
Gene Expression Regulation
Hedgehog Proteins
Homeostasis
Humans
In Vitro Techniques
Kruppel-Like Transcription Factors
Lovastatin
Matrix Metalloproteinase 13
Membrane Proteins
Mice
Mice, Knockout
Osteoarthritis
Radiography
Severity of Illness Index
Signal Transduction
Sterols
Stifle
Zinc Finger Protein Gli2

Chemicals

Anticholesteremic Agents
Col2a1 protein, mouse
Collagen Type II
Gli2 protein, mouse
Hedgehog Proteins
Insig1 protein, mouse
Insig2 protein, mouse
Kruppel-Like Transcription Factors
Membrane Proteins
Sterols
Zinc Finger Protein Gli2
Cholesterol
Lovastatin
ADAM Proteins
ADAMTS5 Protein
Adamts5 protein, mouse
Matrix Metalloproteinase 13
Mmp13 protein, mouse

Word Cloud

Created with Highcharts 10.0.0cholesterolOAaccumulationHHsignalingcartilageseveritygeneshumanchondrocytesmicehomeostasisdegenerationchangeshigherGli-mediatedassociatedsamplesexpressionchondrocyte-specificintracellularattenuatedOBJECTIVE:effectivetherapiesattenuateosteoarthritisresultpaindisabilityActivationhedgehogcausesrelatedprogressionlevelstranscriptionalactivationincreaseddiseaseelucidatemechanismoccursstudysoughtidentifyregulatedMETHODS:UsingmicroarrayanalysesperformeddetectgenepathwaymodulatedResultsanalyzeddifferentiallyexpressedgroupedfunctionalnetworksvalidatedindependentinvestigateeffectssterolgeneratedlackingInsig1Insig2majornegativeregulatorsCol2a1regulatoryelementsRESULTS:foundregulategovernledalterationsleveltranscriptionresultedgeneticallymodifiedphenotypeReducingvivodecreasedproteasesvitroCONCLUSION:regulatescontributesfindingstherapeuticimplicationssincereductionreversedstatintreatmentRegulationCholesterolHomeostasisHedgehogSignalingOsteoarthriticCartilage

Similar Articles

Cited By (33)