Path Models of Vocal Emotion Communication.

Tanja Bänziger, Georg Hosoya, Klaus R Scherer
Author Information
  1. Tanja Bänziger: Department of Psychology, Mid Sweden University, Östersund, Sweden.
  2. Georg Hosoya: Department of Educational Science and Psychology, Freie Universität, Berlin, Germany.
  3. Klaus R Scherer: Swiss Centre for Affective Sciences, University of Geneva, Geneva, Switzerland.

Abstract

We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars).

References

  1. J Pers Soc Psychol. 2013 Mar;104(3):409-26 [PMID: 23276271]
  2. Psychol Bull. 2003 Sep;129(5):770-814 [PMID: 12956543]
  3. Emotion. 2009 Jun;9(3):293-305 [PMID: 19485607]
  4. Psychol Rev. 1964 Nov;71:438-56 [PMID: 14216893]
  5. J Exp Psychol Hum Percept Perform. 2000 Dec;26(6):1797-813 [PMID: 11129375]
  6. Emotion. 2012 Oct;12(5):1161-79 [PMID: 22081890]
  7. Psychol Bull. 1986 Mar;99(2):143-65 [PMID: 3515381]
  8. Percept Psychophys. 1980 Jan;27(1):24-7 [PMID: 7367197]
  9. Front Psychol. 2013 May 13;4:261 [PMID: 23717292]
  10. Phonetica. 2008;65(4):210-30 [PMID: 19221452]
  11. Cogn Emot. 2011 Dec;25(8):1376-92 [PMID: 21432625]
  12. Q J Exp Psychol (Hove). 2010 Nov;63(11):2251-72 [PMID: 20437296]
  13. J Pers Soc Psychol. 2012 Oct;103(4):689-717 [PMID: 22844973]
  14. Horm Behav. 2014 Sep;66(4):569-76 [PMID: 25169905]
  15. Biol Psychol. 2011 Apr;87(1):93-8 [PMID: 21354259]
  16. J Acoust Soc Am. 2010 Sep;128(3):1322-36 [PMID: 20815467]
  17. Emotion. 2001 Dec;1(4):381-412 [PMID: 12901399]
  18. Psychol Sci. 2015 Jan;26(1):3-14 [PMID: 25413877]
  19. Int J Psychol. 2011 Dec;46(6):401-35 [PMID: 22126090]
  20. Psychol Bull. 2008 May;134(3):404-26 [PMID: 18444703]
  21. Psychol Rev. 1964 Jan;71:42-60 [PMID: 14105718]
  22. J Pers Soc Psychol. 2013 Feb;104(2):335-53 [PMID: 23046068]
  23. J Exp Psychol Appl. 2006 Jun;12(2):79-95 [PMID: 16802890]
  24. Psychol Rev. 1964 Nov;71:528-30 [PMID: 14216901]
  25. J Pers Soc Psychol. 1996 Mar;70(3):614-36 [PMID: 8851745]
  26. Phonetica. 1984;41(1):1-16 [PMID: 6204347]
  27. J Pers Soc Psychol. 2012 Oct;103(4):718-35 [PMID: 22800286]

MeSH Term

Communication
Cues
Expressed Emotion
Humans
Models, Statistical
Speech
Voice

Word Cloud

Created with Highcharts 10.0.0emotionvocalpathmodelinferencecuesvoiceresearchcommunicationdatasetsexpressionutilityapproachdemonstratedtwolistenersacousticexpressionssubjectivevariancefamiliesresultsarousaldistalperceptsspecificspecificallyproposeusecomprehensiveencompassingencodingtransmissiondecodingprocessesempiricallyrecognitiondifferentcultureslanguagesbasedcorporaenactmentprofessionalactorsnaïveLensequationshierarchicalregressionmultivariateanalysisusedcomparerelativecontributionsobjectivelymeasuredenactedperceivedfourfearangerhappinesssadnessconfirmcentralroleapplyingextendedmodelingframeworkidentificationuniquecombinationsproximalcarryinginformationindependentstatisticalmodelsgeneratedshowsophisticatedparametersneeddevelopedexplainunderpinningsqualityaccountmuchparticularinstabilityroughnessgeneraladvocatedwellopennewstrategiesworkpsychologysocialperceptionengineeringcomputersciencedevelopmentdomainaffectivecomputingparticularlyautomaticdetectionsyntheticavatarsPathModelsVocalEmotionCommunication

Similar Articles

Cited By