The role of biological fluid and dynamic flow in the behavior and cellular interactions of gold nanoparticles.

Emily K Breitner, Saber M Hussain, Kristen K Comfort
Author Information
  1. Emily K Breitner: Department of Chemical and Materials Engineering, University of Dayton, 524 Kettering Laboratories, 300 College Park, Dayton, OH, 45469-0256, USA. EBreitner1@udayton.edu.
  2. Saber M Hussain: Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, Air Force Research Laboratories, 711 HPW/RHDJ, Wright-Patterson AFB, Dayton, OH, 45433, USA. Saber.Hussain@us.af.mil.
  3. Kristen K Comfort: Department of Chemical and Materials Engineering, University of Dayton, 524 Kettering Laboratories, 300 College Park, Dayton, OH, 45469-0256, USA. Kcomfort1@udayton.edu.

Abstract

BACKGROUND: Due to their distinctive physicochemical properties, nanoparticles (NPs) have proven to be extremely advantageous for product and application development, but are also capable of inducing detrimental outcomes in biological systems. Standard in vitro methodologies are currently the primary means for evaluating NP safety, as vast quantities of particles exist that require appraisal. However, cell-based models are plagued by the fact that they are not representative of complex physiological systems. The need for a more accurate exposure model is highlighted by the fact that NP behavior and subsequent bioresponses are highly dependent upon their surroundings. Therefore, standard in vitro models will likely produce inaccurate NP behavioral analyses and erroneous safety results. As such, the goal of this study was to develop an enhanced in vitro model for NP evaluation that retained the advantages of cell culture, but implemented the key physiological variables of accurate biological fluid and dynamic flow.
RESULTS: In this study, a cellular microenvironment was modeled and created after an inhalation exposure scenario. This system comprised of A549 lung epithelial cells, artificial alveolar fluid (AAF), and biologically accurate dynamic flow. Under the influence of microenvironment variables, tannic acid coated gold NPs (AuNPs) displayed modulated physicochemical characteristics, including increased agglomeration, disruption of the spectral signature, and decreased rate of ionic dissolution. Furthermore, AuNP deposition efficiency, internalization patterns, and the nano-cellular interface varied as a function of fluid composition and flow condition. AAF incubation simultaneously influenced both AuNPs and cellular behavior, through excessive NP agglomeration and alteration to A549 morphology. Dynamic flow targeted the nano-cellular interface, with differential responses including modified deposition, internalization patterns, and cellular elongation. Lastly, the biocompatibility of the system was verified to ensure cellular health following AAF exposure and fluid dynamics.
CONCLUSIONS: This study confirmed the feasibility of improving standard in vitro models through the incorporation of physiological variables. Utilization of this enhanced system demonstrated that to elucidate true NP behavior and accurately gauge their cellular interactions, assessments should be carried out in a more complex and relevant biological exposure model.

References

  1. Chem Soc Rev. 2015 Aug 21;44(16):5793-805 [PMID: 25669838]
  2. Phys Chem Chem Phys. 2009 Nov 28;11(44):10494-9 [PMID: 19890536]
  3. Environ Health Perspect. 2011 Mar;119(3):a120-5 [PMID: 21356630]
  4. Int J Mol Sci. 2014;15(3):4795-822 [PMID: 24646916]
  5. Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4094-100 [PMID: 23910319]
  6. Nanotoxicology. 2014 Sep;8(6):697-708 [PMID: 23909703]
  7. Part Fibre Toxicol. 2010;7(1):36 [PMID: 21118529]
  8. Nano Lett. 2006 Apr;6(4):662-8 [PMID: 16608261]
  9. Cell Metab. 2006 May;3(5):321-31 [PMID: 16679290]
  10. Acc Chem Res. 2013 Mar 19;46(3):662-71 [PMID: 22853558]
  11. Ann Biomed Eng. 2013 Jan;41(1):89-99 [PMID: 22855121]
  12. ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8366-73 [PMID: 23957848]
  13. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):151-65 [PMID: 22178382]
  14. Part Fibre Toxicol. 2013;10:47 [PMID: 24088372]
  15. Part Fibre Toxicol. 2005 Oct 06;2:8 [PMID: 16209704]
  16. Chem Soc Rev. 2013 Nov 7;42(21):8339-59 [PMID: 23877583]
  17. Free Radic Res. 2006 Feb;40(2):167-74 [PMID: 16390826]
  18. ACS Nano. 2011 Dec 27;5(12):10000-8 [PMID: 22070748]
  19. ACS Nano. 2010 Sep 28;4(9):5421-9 [PMID: 20799717]
  20. Environ Sci Technol. 2012 Jan 17;46(2):752-9 [PMID: 22142034]
  21. Cell Tissue Res. 2003 Jan;311(1):31-45 [PMID: 12483282]
  22. Arch Pharm Res. 2014 Jan;37(1):53-9 [PMID: 24214174]
  23. Anal Bioanal Chem. 2011 Oct;401(6):1993-2002 [PMID: 21808990]
  24. Apoptosis. 2000 Nov;5(5):415-8 [PMID: 11256882]
  25. J Biochem Mol Toxicol. 2013 Jan;27(1):50-5 [PMID: 23129019]
  26. Nano Lett. 2010 Jul 14;10(7):2543-8 [PMID: 20533851]
  27. J Environ Monit. 2003 Aug;5(4):675-80 [PMID: 12948248]
  28. Langmuir. 2009 Jan 6;25(1):317-25 [PMID: 19067523]
  29. J Nanobiotechnology. 2010 Jul 14;8:16 [PMID: 20630072]
  30. Environ Pollut. 2014 Aug;191:132-8 [PMID: 24832924]
  31. J Appl Physiol (1985). 1993 Jan;74(1):1-15 [PMID: 8444679]
  32. Nanotoxicology. 2015;9(7):886-94 [PMID: 25672814]
  33. ACS Nano. 2014 Apr 22;8(4):3260-71 [PMID: 24628301]
  34. Nat Nanotechnol. 2011 Jun;6(6):385-91 [PMID: 21516092]
  35. ACS Nano. 2013 Dec 23;7(12):10799-808 [PMID: 24251827]
  36. Toxicol Sci. 2007 Feb;95(2):300-12 [PMID: 17098817]
  37. J Vis Exp. 2014;(83):e50823 [PMID: 24430378]
  38. Chem Soc Rev. 2012 Mar 21;41(6):2323-43 [PMID: 22170510]
  39. Toxicol Lett. 2014 Jan 3;224(1):84-92 [PMID: 24140553]
  40. Colloids Surf B Biointerfaces. 2014 Nov 1;123:136-42 [PMID: 25260222]
  41. Langmuir. 2014 Dec 23;30(50):15309-16 [PMID: 25496452]

MeSH Term

Cell Communication
Cell Line
Epithelial Cells
Gold
Humans
Inhalation Exposure
Lung
Metal Nanoparticles
Particle Size

Chemicals

Gold

Word Cloud

Created with Highcharts 10.0.0NPcellularfluidflowbiologicalvitroexposurebehaviormodelsphysiologicalaccuratemodelstudyvariablesdynamicsystemAAFphysicochemicalnanoparticlesNPssystemssafetyfactcomplexstandardenhancedmicroenvironmentA549goldAuNPsincludingagglomerationdepositioninternalizationpatternsnano-cellularinterfaceinteractionsBACKGROUND:DuedistinctivepropertiesprovenextremelyadvantageousproductapplicationdevelopmentalsocapableinducingdetrimentaloutcomesStandardmethodologiescurrentlyprimarymeansevaluatingvastquantitiesparticlesexistrequireappraisalHowevercell-basedplaguedrepresentativeneedhighlightedsubsequentbioresponseshighlydependentuponsurroundingsThereforewilllikelyproduceinaccuratebehavioralanalyseserroneousresultsgoaldevelopevaluationretainedadvantagescellcultureimplementedkeyRESULTS:modeledcreatedinhalationscenariocomprisedlungepithelialcellsartificialalveolarbiologicallyinfluencetannicacidcoateddisplayedmodulatedcharacteristicsincreaseddisruptionspectralsignaturedecreasedrateionicdissolutionFurthermoreAuNPefficiencyvariedfunctioncompositionconditionincubationsimultaneouslyinfluencedexcessivealterationmorphologyDynamictargeteddifferentialresponsesmodifiedelongationLastlybiocompatibilityverifiedensurehealthfollowingdynamicsCONCLUSIONS:confirmedfeasibilityimprovingincorporationUtilizationdemonstratedelucidatetrueaccuratelygaugeassessmentscarriedrelevantrole

Similar Articles

Cited By