Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody.

Tianlei Ying, Ponraj Prabakaran, Lanying Du, Wei Shi, Yang Feng, Yanping Wang, Lingshu Wang, Wei Li, Shibo Jiang, Dimiter S Dimitrov, Tongqing Zhou
Author Information
  1. Tianlei Ying: Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  2. Ponraj Prabakaran: Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
  3. Lanying Du: Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA.
  4. Wei Shi: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
  5. Yang Feng: Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
  6. Yanping Wang: Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
  7. Lingshu Wang: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
  8. Wei Li: Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  9. Shibo Jiang: Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  10. Dimiter S Dimitrov: Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
  11. Tongqing Zhou: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (∼36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of binding at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.

Associated Data

PDB | 4XAK

References

  1. Immunity. 1999 Sep;11(3):329-38 [PMID: 10514011]
  2. Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54 [PMID: 12393927]
  3. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2706-11 [PMID: 14981267]
  4. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 [PMID: 15299374]
  5. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  6. Eur J Immunol. 2005 Jul;35(7):2131-45 [PMID: 15971273]
  7. J Biol Chem. 2006 Jun 9;281(23):15829-36 [PMID: 16597622]
  8. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83 [PMID: 17452350]
  9. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12123-8 [PMID: 17620608]
  10. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8 [PMID: 18503082]
  11. Nat Struct Mol Biol. 2009 Mar;16(3):265-73 [PMID: 19234466]
  12. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  13. Biochem Biophys Res Commun. 2009 Dec 18;390(3):404-9 [PMID: 19748484]
  14. MAbs. 2010 May-Jun;2(3):347-56 [PMID: 20400863]
  15. Science. 2010 Aug 13;329(5993):811-7 [PMID: 20616231]
  16. Viruses. 2010 Feb;2(2):547-565 [PMID: 21755021]
  17. Science. 2011 Sep 16;333(6049):1593-602 [PMID: 21835983]
  18. Immunogenetics. 2012 May;64(5):337-50 [PMID: 22200891]
  19. Nat Biotechnol. 2012 May 07;30(5):423-33 [PMID: 22565972]
  20. Science. 2012 Jul 13;337(6091):183-6 [PMID: 22798606]
  21. Front Microbiol. 2012 Aug 02;3:277 [PMID: 22876240]
  22. Nature. 2012 Sep 27;489(7417):566-70 [PMID: 22932267]
  23. N Engl J Med. 2012 Nov 8;367(19):1814-20 [PMID: 23075143]
  24. MBio. 2012 Nov 20;3(6):null [PMID: 23170002]
  25. PLoS Pathog. 2013 Jan;9(1):e1003106 [PMID: 23300456]
  26. Nature. 2013 Mar 14;495(7440):251-4 [PMID: 23486063]
  27. Science. 2013 May 10;340(6133):711-6 [PMID: 23539181]
  28. J Virol. 2013 Aug;87(15):8638-50 [PMID: 23720729]
  29. N Engl J Med. 2013 Aug 1;369(5):407-16 [PMID: 23782161]
  30. Cell Res. 2013 Aug;23(8):986-93 [PMID: 23835475]
  31. Immunity. 2013 Aug 22;39(2):245-58 [PMID: 23911655]
  32. Lancet Infect Dis. 2013 Oct;13(10):859-66 [PMID: 23933067]
  33. Nat Commun. 2013;4:2333 [PMID: 23995877]
  34. PLoS Pathog. 2013;9(10):e1003684 [PMID: 24130486]
  35. Nat Rev Microbiol. 2013 Dec;11(12):836-48 [PMID: 24217413]
  36. Sci Transl Med. 2013 Nov 27;5(213):213ra167 [PMID: 24285486]
  37. Euro Surveill. 2013 Dec 12;18(50):20662 [PMID: 24342516]
  38. Euro Surveill. 2013 Dec 12;18(50):20659 [PMID: 24342517]
  39. J Virol. 2014 May;88(9):4953-61 [PMID: 24554656]
  40. Proc Natl Acad Sci U S A. 2014 May 13;111(19):E2018-26 [PMID: 24778221]
  41. Sci Transl Med. 2014 Apr 30;6(234):234ra59 [PMID: 24778414]
  42. J Virol. 2014 Jul;88(14):7796-805 [PMID: 24789777]
  43. Front Immunol. 2014 Apr 22;5:170 [PMID: 24795717]
  44. Sci Transl Med. 2014 Jun 25;6(242):242ra82 [PMID: 24964990]
  45. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12516-21 [PMID: 25114257]
  46. Nature. 2014 Dec 18;516(7531):418-22 [PMID: 25296253]
  47. Microbes Infect. 2015 Feb;17(2):142-8 [PMID: 25456101]
  48. Science. 2014 Dec 12;346(6215):1380-1383 [PMID: 25504724]
  49. Nat Commun. 2015 Jul 28;6:7712 [PMID: 26218507]
  50. Methods Enzymol. 1997;276:307-26 [PMID: 27754618]

Grants

  1. Z99 CA999999/Intramural NIH HHS

MeSH Term

Alleles
Antibodies, Neutralizing
Antibodies, Viral
Crystallization
Crystallography, X-Ray
Epitopes
Genes, Immunoglobulin Heavy Chain
Humans
Immunoglobulin G
Middle East Respiratory Syndrome Coronavirus
Somatic Hypermutation, Immunoglobulin
V(D)J Recombination

Chemicals

Antibodies, Neutralizing
Antibodies, Viral
Epitopes
Immunoglobulin G

Word Cloud

Created with Highcharts 10.0.0MERS-CoVm336humanshighexceptionallypotentantibodyalmostsomaticheavychainreceptor-bindingbindingepitopeantibodiesimportantallele-specificresiduesneutralizationemergingvirusalreadyinfected1300∼36%mortalityshowhumananti-MERS-CoVgermlineonemutationstructureFabcomplexdomainrevealsIGHV1-69-derivedprovides85%surfacecompletelyoverlapssiteAnalysis69healthysuggestsroleVDJrecombination-generatedjunctionalachievingaffinitylowlevelshypermutationresultsalsoimplicationsdevelopmentvaccineimmunogensbasednewlyidentifiedwellelucidationmechanismsm336-likeelicitationvivoJunctionalcriticalgermline-like

Similar Articles

Cited By