Effect of exposure to extremely low frequency magnetic fields on melatonin levels in calves is seasonally dependent.

Tereza Kolbabová, E Pascal Malkemper, Luděk Bartoš, Jacques Vanderstraeten, Marek Turčáni, Hynek Burda
Author Information
  1. Tereza Kolbabová: Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
  2. E Pascal Malkemper: Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
  3. Luděk Bartoš: Department of Ethology, Institute of Animal Science, Přátelství 815, 104 00 Prague-Uhříněves, Czech Republic.
  4. Jacques Vanderstraeten: Research Center on Environmental Health and Work Health, School of Public Health, Université Libre de Bruxelles, CP 593, Route de Lennik 808, 1070 Brussels, Belgium.
  5. Marek Turčáni: Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
  6. Hynek Burda: Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.

Abstract

The question of health effects of extremely low frequency (50/60 Hz) magnetic fields (ELFMF) has been widely discussed, but the mechanisms of interaction of these fields with biological systems for intensities relevant to human and animal exposure are still under question. The melatonin (MLT) hypothesis suggests that exposure to ELFMF might decrease MLT production thereby promoting cancerogenesis. So far, most studies of MLT secretion under exposure to ELFMF reported negative or inconsistent results. Here, we measured salivary MLT in 1-2 months old cattle calves exposed to 50 Hz-MF in the hundreds of nT-range. We found an inhibitory effect of the ELFMF upon MLT secretion in winter (in accordance with the MLT hypothesis). In contrast, in summer, MLT concentration was increased by ELFMF exposure (contrary to the MLT hypothesis). The inhibitory effect in winter was much stronger than the positive effect in summer. We hypothesize that this season-dependent effect upon MLT synthesis might by mediated by an effect of ELFMF upon the serotonin metabolism and conclude that future tests of ELFMF effects should also measure serotonin levels and consider association with the seasonal effects (photoperiod or temperature) during the exposure.

References

  1. Dialogues Clin Neurosci. 2012 Dec;14(4):381-99 [PMID: 23393415]
  2. Exp Brain Res. 1983;50(2-3):426-32 [PMID: 6641877]
  3. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4774-9 [PMID: 22421133]
  4. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Aug;199(8):695-701 [PMID: 23700176]
  5. Bioelectromagnetics. 2010 Feb;31(2):164-71 [PMID: 19771546]
  6. Electromagn Biol Med. 2014 Sep;33(3):241-5 [PMID: 23915203]
  7. Life Sci. 1995;57(14):1351-8 [PMID: 7564882]
  8. Cancer Epidemiol Biomarkers Prev. 2008 Dec;17(12):3306-13 [PMID: 19064543]
  9. Prog Biophys Mol Biol. 2011 Dec;107(3):369-73 [PMID: 21914452]
  10. J Appl Toxicol. 2012 Dec;32(12):952-8 [PMID: 22696437]
  11. J Pineal Res. 1997 May;22(4):171-6 [PMID: 9247202]
  12. J Dairy Sci. 1998 Mar;81(3):722-7 [PMID: 9565875]
  13. J Pineal Res. 1987;4(2):201-10 [PMID: 3598855]
  14. Biochem Biophys Res Commun. 1990 May 31;169(1):102-8 [PMID: 1693500]
  15. Stat Med. 2000 Jul 15;19(13):1793-819 [PMID: 10861779]
  16. J Radiat Res. 2005 Sep;46(3):313-8 [PMID: 16210787]
  17. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5708-13 [PMID: 19299504]
  18. Emerg Health Threats J. 2012;5:null [PMID: 22529876]
  19. Neurosci Lett. 1993 Jul 9;157(1):79-82 [PMID: 8233036]
  20. Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13451-5 [PMID: 18725629]
  21. Endocrinology. 1992 Mar;130(3):1645-52 [PMID: 1537312]
  22. Prog Biophys Mol Biol. 2011 Dec;107(3):339-42 [PMID: 21946043]
  23. Bioelectromagnetics. 2004 Oct;25(7):508-15 [PMID: 15376244]
  24. J Physiol. 2000 Aug 1;526 Pt 3:695-702 [PMID: 10922269]
  25. Lancet. 2002 Dec 7;360(9348):1840-2 [PMID: 12480364]
  26. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Dec;197(12):1127-33; discussion 1135-6 [PMID: 22028177]
  27. Bioelectromagnetics. 2007 Sep;28(6):471-6 [PMID: 17492762]
  28. J Cell Mol Med. 2013 Aug;17(8):958-65 [PMID: 23802593]
  29. Life Sci. 1999;64(24):2291-7 [PMID: 10374919]
  30. Domest Anim Endocrinol. 1996 Jul;13(4):307-23 [PMID: 8839625]
  31. Bioelectromagnetics. 2004 May;25(4):308-12 [PMID: 15114640]
  32. Sci Total Environ. 2012 Feb 15;417-418:299-304 [PMID: 22071437]
  33. Radiat Res. 1998 Nov;150(5):557-67 [PMID: 9806598]
  34. Biol Psychiatry. 1989 Nov;26(7):695-706 [PMID: 2478199]
  35. J Biol Rhythms. 1997 Dec;12(6):518-27 [PMID: 9406025]
  36. Acta Vet Scand. 2001;42(2):287-94 [PMID: 11503374]
  37. Bioelectromagnetics. 2005;Suppl 7:S86-97 [PMID: 16059923]

MeSH Term

Animals
Cattle
Female
Magnetic Fields
Male
Melatonin
Models, Biological
Saliva
Seasons

Chemicals

Melatonin

Word Cloud

Created with Highcharts 10.0.0MLTELFMFexposureeffecteffectsfieldshypothesisuponquestionextremelylowfrequencymagneticmelatoninmightsecretioncalvesinhibitorywintersummerserotoninlevelshealth50/60Hzwidelydiscussedmechanismsinteractionbiologicalsystemsintensitiesrelevanthumananimalstillsuggestsdecreaseproductiontherebypromotingcancerogenesisfarstudiesreportednegativeinconsistentresultsmeasuredsalivary1-2monthsoldcattleexposed50Hz-MFhundredsnT-rangefoundaccordancecontrastconcentrationincreasedcontrarymuchstrongerpositivehypothesizeseason-dependentsynthesismediatedmetabolismconcludefuturetestsalsomeasureconsiderassociationseasonalphotoperiodtemperatureEffectseasonallydependent

Similar Articles

Cited By