Condurango (Gonolobus condurango) Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro: CE-treatment on HeLa: a ROS-dependent mechanism.

Kausik Bishayee, Jesmin Mondal, Sourav Sikdar, Anisur Rahman Khuda-Bukhsh
Author Information
  1. Kausik Bishayee: Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India.
  2. Jesmin Mondal: Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India.
  3. Sourav Sikdar: Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India.
  4. Anisur Rahman Khuda-Bukhsh: Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India.

Abstract

OBJECTIVES: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear.
METHODS: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs).
RESULTS: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha (TNF-α) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB ) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities.
CONCLUSION: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

Keywords

References

  1. Curr Pharm Des. 2014;20(42):6682-96 [PMID: 25341940]
  2. J Ethnopharmacol. 2014 Apr 11;153(1):258-67 [PMID: 24583069]
  3. J Exp Med. 2000 Oct 16;192(8):21-6 [PMID: 11034597]
  4. Oncol Lett. 2013 Mar;5(3):917-922 [PMID: 23426522]
  5. Cell. 2000 Jan 7;100(1):57-70 [PMID: 10647931]
  6. J Pharmacopuncture. 2014 Jun;17(2):7-17 [PMID: 25780694]
  7. J Integr Med. 2013 Nov;11(6):405-15 [PMID: 24299604]
  8. Curr Mol Med. 2012 Feb;12(2):163-76 [PMID: 22280355]
  9. Mol Cell Biochem. 2013 Oct;382(1-2):173-83 [PMID: 23807740]
  10. J Cancer Sci Ther. 2009 Dec 1;1(2):1-4 [PMID: 20740081]
  11. Exp Oncol. 2012 Oct;34(3):165-75 [PMID: 23070001]
  12. Oncogene. 2004 Dec 16;23(58):9408-18 [PMID: 15516989]
  13. Talanta. 2008 Oct 19;77(1):152-9 [PMID: 18804613]
  14. J Vis Exp. 2011 Apr 24;(50):null [PMID: 21540825]
  15. Chem Pharm Bull (Tokyo). 1980 Jun;28(6):1954-8 [PMID: 7408062]
  16. Aging (Albany NY). 2012 Jun;4(6):431-5 [PMID: 22745179]
  17. Zhong Xi Yi Jie He Xue Bao. 2012 Sep;10(9):1025-38 [PMID: 22979935]
  18. Int J Cell Biol. 2010;2010:214074 [PMID: 20182529]
  19. Immunobiology. 1984 May;166(3):238-50 [PMID: 6329947]
  20. Genomics. 1992 Sep;14(1):179-80 [PMID: 1385299]
  21. Biol Chem. 2009 Oct;390(10 ):965-76 [PMID: 19642868]
  22. Cell Death Differ. 2013 Jan;20(1):64-76 [PMID: 22858544]
  23. Neoplasia. 2000 Jul-Aug;2(4):291-9 [PMID: 11005563]
  24. Nature. 2009 Apr 9;458(7239):686-7 [PMID: 19360048]
  25. Biochem J. 2009 Jan 1;417(1):1-13 [PMID: 19061483]
  26. J Nat Prod. 2014 Sep 26;77(9):2044-53 [PMID: 25215856]

Word Cloud

Created with Highcharts 10.0.0cellsCECondurangocondurangoextractcancercelllevelsGonolobusmedicinealsotumormolecularHeLamodelcytotoxicreactiveoxygenspeciesROSactionmediatedcausedacidG0/G1factorRNAproteinmechanismpossiblecytotoxicityROS-dependentOBJECTIVES:usedcomplementaryalternativeCAMpractitionerstraditionalincludinghomeopathymainlytreatmentsyphilisbarkknownreducevolumeunderlyingmechanismsstillremainunclearMETHODS:Usingcervicallineeventsbehindextract'sCE'santicancereffectinvestigatedusingflowcytometryimmunoblottingreversetranscriptase-polymerasechainreactionRT-PCRincludedtypesprostatePC3transformedliverWRL-68peripheralbloodmononuclearPBMCsRESULTS:foundtargetsignificantlydeactivatedpresenceN-acetylcysteineNACscavengersuggestinggenerationincreasepopulationcontainingdeoxyribonucleicDNAdamageGzero/Growth1stageincreasednecrosisalphaTNF-αfasreceptorFasRribonucleicindicatingmighttriggeredsharpdecreaseexpressionnuclearkappa-light-chain-enhanceractivatedBNF-κBrouteattenuationB-celllymphoma2Bcl-2openingmitochondrialmembrane'spermeabilitytransitionMPTporesthusenhancingcaspaseactivitiesCONCLUSION:OverallresultssuggestpathwaysExtractActivatesFasReceptorDepolarizesMitochondrialMembranePotentialInduceApoptosisCancerCellsvitro:CE-treatmentHeLa:arrestapoptosis

Similar Articles

Cited By