A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms.

Nathan Torbick, Megan Corbiere
Author Information
  1. Nathan Torbick: Applied Geosolutions, Newmarket, New Hampshire, NH 03857, USA. ntorbick@appliedgeosolutions.com.
  2. Megan Corbiere: Applied Geosolutions, Newmarket, New Hampshire, NH 03857, USA. mcorbiere@appliedgeosolutions.com.

Abstract

Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophylla and phycocyanin concentrations; all sensors performed well with R² and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 μg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost.

Keywords

References

  1. PLoS One. 2013;8(9):e75376 [PMID: 24086518]
  2. Opt Express. 2010 Nov 8;18(23):24109-25 [PMID: 21164758]
  3. Toxicol Appl Pharmacol. 2005 Mar 15;203(3):264-72 [PMID: 15737680]
  4. World J Biol Chem. 2014 May 26;5(2):224-30 [PMID: 24921011]
  5. PLoS One. 2012;7(8):e42444 [PMID: 22870327]
  6. Nat Rev Neurosci. 2013 Apr;14(4):248-64 [PMID: 23463272]
  7. Water Res. 2002 Oct;36(17):4330-40 [PMID: 12420938]
  8. J Environ Biol. 2002 Jul;23(3):215-24 [PMID: 12597562]
  9. Amyotroph Lateral Scler. 2009;10 Suppl 2:101-8 [PMID: 19929741]
  10. Amyotroph Lateral Scler Frontotemporal Degener. 2013 Sep;14(5-6):325-33 [PMID: 23286757]
  11. Int J Health Geogr. 2014;13:1 [PMID: 24383521]
  12. Exp Neurol. 2014 Dec;262 Pt B:121-6 [PMID: 25108067]
  13. Proteins. 2013 Aug;81(8):1285-303 [PMID: 23508986]
  14. Appl Opt. 2006 May 20;45(15):3577-92 [PMID: 16708105]
  15. Sci Total Environ. 2014 Jan 1;466-467:397-403 [PMID: 23927933]
  16. Prion. 2014 Jan-Feb;8(1):33-41 [PMID: 24394345]
  17. Remote Sens Environ. 2014 Mar 5;143:97-111 [PMID: 24839311]
  18. Toxins (Basel). 2015 Feb;7(2):322-36 [PMID: 25643180]

Grants

  1. R44 ES022103/NIEHS NIH HHS
  2. R44 ES022103-03/NIEHS NIH HHS

MeSH Term

Cyanobacteria
Environmental Monitoring
Harmful Algal Bloom
Lakes
Models, Theoretical
Water Quality

Word Cloud

Created with Highcharts 10.0.0LakeChamplainLandsat8OLIwaterqualityphycocyanin0bayscyanobacterialharmfulalgalbloomspublichealthtoolsProbaCHRISconcentrationssensorsacrossmonitoringundergoingchronicposethreatMonitoringassessmentneeddevelopedsupportriskdecisionmakinggainthoroughunderstandingbloomscalesintensitiesresearchapplicationOperationalLandImagerRapidEyeCompactHighResolutionImagingSpectrometerimagesobtainedcorrespondingfieldcampaigncollectedsitumeasurementsModelsincludingempiricalbandratioregressionsappliedmapchlorophyllaperformedwellroot-mean-squareerrorRMSEranging768842151respectivelyoutcomesshowedspatialpatternslakeproblematic>25μg/LalertstatusmetrictunedcurrentprotocolgeneratedusingmodeledillustrateremotesensingcaninformsystemAmongutilizedstudyholdspromiseprovidingexposureinformationwideareagivenresolutionssystematicobservationstrategyfreecostMultiscaleMappingAssessmentCyanobacterialHarmfulAlgalBloomsRapidEyechlorophyll-a

Similar Articles

Cited By