Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata.

Rodolphe Poupardin, Konrad Schöttner, Jaroslava Korbelová, Jan Provazník, David Doležel, Dinko Pavlinic, Vladimír Beneš, Vladimír Koštál
Author Information
  1. Rodolphe Poupardin: Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. rodolphe.poupardin@gmail.com.
  2. Konrad Schöttner: Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. schoettner@entu.cas.cz.
  3. Jaroslava Korbelová: Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. ladylike@centrum.cz.
  4. Jan Provazník: Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. provaz@entu.cas.cz.
  5. David Doležel: Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. dolezel@entu.cas.cz.
  6. Dinko Pavlinic: Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany. pavlinic@exc.embl.de.
  7. Vladimír Beneš: Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany. benes@embl.de.
  8. Vladimír Koštál: Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. kostal@entu.cas.cz.

Abstract

BACKGROUND: Diapause is a developmental alternative to direct ontogeny in many invertebrates. Its primary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change.
RESULTS: Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins. This highly complex alteration of gene transcription was expressed already during first extended night, within the first four hours after the change of the photoperiodic signal from long days to short days. We validated our RNAseq differential gene expression results in an independent qRT-PCR experiment involving wild-type (photoperiodic) and NPD-mutant (non-photoperiodic) strains of C. costata.
CONCLUSIONS: Our study revealed several strong candidate genes for follow-up functional studies. Candidate genes code for upstream regulators of a complex change of gene expression, which leads to phenotypic switch from direct ontogeny to larval diapause.

References

  1. Genes Dev. 1999 Jun 15;13(12):1501-12 [PMID: 10385618]
  2. J Cell Sci. 1999 Dec;112 ( Pt 23):4185-91 [PMID: 10564637]
  3. Annu Rev Cell Dev Biol. 1999;15:799-842 [PMID: 10611978]
  4. Cell. 1999 Dec 10;99(6):661-71 [PMID: 10612401]
  5. Metabolism. 2000 Feb;49(2 Suppl 1):3-8 [PMID: 10693912]
  6. J Insect Physiol. 2000 Jun 1;46(6):887-896 [PMID: 10802100]
  7. Insect Biochem Mol Biol. 2000 Jun;30(6):515-21 [PMID: 10802243]
  8. Gene. 2001 Jan 10;262(1-2):189-98 [PMID: 11179683]
  9. Exp Gerontol. 2001 Apr;36(4-6):723-38 [PMID: 11295511]
  10. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  11. EMBO Rep. 2001 Oct;2(10):885-90 [PMID: 11600451]
  12. Dev Cell. 2001 Oct;1(4):453-65 [PMID: 11703937]
  13. Gene. 2001 Oct 31;278(1-2):177-84 [PMID: 11707335]
  14. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  15. Annu Rev Entomol. 2002;47:883-916 [PMID: 11729094]
  16. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1954-9 [PMID: 11842220]
  17. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):975-80 [PMID: 12509509]
  18. Biotechniques. 2003 Feb;34(2):374-8 [PMID: 12613259]
  19. J Insect Physiol. 1998 Jul;44(7-8):605-614 [PMID: 12769943]
  20. J Insect Physiol. 2003 Feb;49(2):161-9 [PMID: 12770009]
  21. J Insect Physiol. 2000 Apr;46(4):417-428 [PMID: 12770205]
  22. Development. 2003 Aug;130(16):3651-62 [PMID: 12835382]
  23. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  24. Insect Biochem Mol Biol. 2003 Dec;33(12):1327-38 [PMID: 14599504]
  25. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13773-8 [PMID: 14610274]
  26. Naturwissenschaften. 2004 Jul;91(7):320-3 [PMID: 15257385]
  27. Insect Biochem Mol Biol. 2004 Sep;34(9):991-1010 [PMID: 15350618]
  28. BMC Bioinformatics. 2004 Sep 28;5:138 [PMID: 15453918]
  29. EMBO J. 2004 Dec 8;23(24):4709-16 [PMID: 15538380]
  30. Insect Mol Biol. 2005 Apr;14(2):151-61 [PMID: 15796748]
  31. Mech Dev. 2005 Jul;122(7-8):865-76 [PMID: 15922571]
  32. Cell. 2005 Jul 15;122(1):9-12 [PMID: 16009127]
  33. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  34. Science. 2005 Sep 2;309(5740):1519-24 [PMID: 16141061]
  35. Biochem Biophys Res Commun. 2005 Nov 11;337(1):367-74 [PMID: 16188237]
  36. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15912-7 [PMID: 16247003]
  37. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  38. Development. 2006 Jul;133(13):2565-74 [PMID: 16763204]
  39. J Biol Chem. 2006 Nov 17;281(46):35404-12 [PMID: 16921172]
  40. Dev Biol. 2006 Oct 15;298(2):555-70 [PMID: 16949568]
  41. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15911-5 [PMID: 17043223]
  42. J Insect Physiol. 2007 Mar;53(3):235-45 [PMID: 17098250]
  43. Biochim Biophys Acta. 2007 Mar;1770(3):314-29 [PMID: 17239540]
  44. Cell. 2007 Feb 23;128(4):693-705 [PMID: 17320507]
  45. J Insect Physiol. 2007 Apr;53(4):385-91 [PMID: 17349654]
  46. EMBO Rep. 2007 May;8(5):483-9 [PMID: 17380188]
  47. J Biol Chem. 2007 Jul 13;282(28):20395-406 [PMID: 17500065]
  48. J Insect Physiol. 2007 Aug;53(8):760-73 [PMID: 17532002]
  49. J Comp Neurol. 2007 Aug 1;503(4):511-24 [PMID: 17534946]
  50. Insect Biochem Mol Biol. 2007 Oct;37(10):1044-53 [PMID: 17785192]
  51. Insect Biochem Mol Biol. 2007 Oct;37(10):1094-102 [PMID: 17785197]
  52. Biotechnol Lett. 2008 Feb;30(2):187-96 [PMID: 17885737]
  53. Cryo Letters. 2007 May-Jun;28(3):137-50 [PMID: 17898903]
  54. J Biol Rhythms. 2008 Apr;23(2):129-39 [PMID: 18375862]
  55. Insect Biochem Mol Biol. 2008 May;38(5):529-39 [PMID: 18405831]
  56. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6777-81 [PMID: 18448677]
  57. Nature. 2008 Jun 5;453(7196):798-802 [PMID: 18463631]
  58. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Aug;194(8):751-62 [PMID: 18546002]
  59. J Insect Physiol. 2009 Jan;55(1):32-9 [PMID: 18992752]
  60. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  61. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5731-6 [PMID: 19289821]
  62. BMC Genomics. 2009 May 24;10:242 [PMID: 19463195]
  63. J Exp Biol. 2009 Jul;212(Pt 13):2075-84 [PMID: 19525434]
  64. Physiol Genomics. 2009 Nov 6;39(3):202-9 [PMID: 19706691]
  65. BMC Genomics. 2009 Sep 29;10:456 [PMID: 19788735]
  66. Insect Biochem Mol Biol. 2009 Dec;39(12):875-83 [PMID: 19879357]
  67. J Med Entomol. 2009 Nov;46(6):1382-6 [PMID: 19960684]
  68. Insect Biochem Mol Biol. 2010 Mar;40(3):235-40 [PMID: 20018241]
  69. J Insect Physiol. 2010 Jun;56(6):603-9 [PMID: 20026067]
  70. BMC Ecol. 2010 Feb 01;10:3 [PMID: 20122138]
  71. Insect Biochem Mol Biol. 2010 Mar;40(3):189-204 [PMID: 20171281]
  72. Cell Mol Life Sci. 2010 Jul;67(14):2405-24 [PMID: 20213274]
  73. PLoS One. 2010 Mar 05;5(3):e9574 [PMID: 20221437]
  74. J Insect Physiol. 2010 Sep;56(9):1147-54 [PMID: 20230829]
  75. Development. 2010 Jun;137(12):1991-9 [PMID: 20501590]
  76. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14909-14 [PMID: 20668242]
  77. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  78. Biol Bull. 1946 Jun;90:234-43 [PMID: 20988208]
  79. J Insect Physiol. 2011 May;57(5):538-56 [PMID: 21029738]
  80. Cell. 1990 Apr 6;61(1):85-99 [PMID: 2107982]
  81. PLoS One. 2010 Nov 18;5(11):e14058 [PMID: 21124981]
  82. Cell. 2011 Feb 18;144(4):513-25 [PMID: 21335234]
  83. J Insect Physiol. 2011 Jun;57(6):840-50 [PMID: 21435341]
  84. BMC Genomics. 2011 May 11;12:224 [PMID: 21569297]
  85. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13041-6 [PMID: 21788482]
  86. J Exp Biol. 2011 Dec 1;214(Pt 23):3948-59 [PMID: 22071185]
  87. Curr Opin Cell Biol. 2012 Aug;24(4):460-6 [PMID: 22854296]
  88. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  89. Annu Rev Entomol. 2013;58:497-516 [PMID: 23072462]
  90. Annu Rev Entomol. 2013;58:251-71 [PMID: 23072463]
  91. Genes Dev. 2013 Feb 15;27(4):378-89 [PMID: 23392611]
  92. Proc Biol Sci. 2013 Mar 20;280(1759):20130143 [PMID: 23516243]
  93. EMBO J. 2013 Aug 14;32(16):2217-30 [PMID: 23872946]
  94. J Exp Biol. 2013 Nov 1;216(Pt 21):4082-90 [PMID: 23913949]
  95. Insect Biochem Mol Biol. 2013 Oct;43(10):982-9 [PMID: 23933212]
  96. BMC Genomics. 2013 Nov 21;14:815 [PMID: 24261877]
  97. Annu Rev Biochem. 1986;55:1151-91 [PMID: 2427013]
  98. PLoS One. 2013 Dec 04;8(12):e79861 [PMID: 24324583]
  99. Bioinformatics. 2014 Jun 15;30(12):1660-6 [PMID: 24532719]
  100. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  101. Proc Natl Acad Sci U S A. 1989 May;86(10):3748-52 [PMID: 2498875]
  102. Annu Rev Entomol. 2015 Jan 7;60:59-75 [PMID: 25341107]
  103. J Therm Biol. 2014 Oct;45:124-33 [PMID: 25436961]
  104. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  105. BioData Min. 2015 Jan 08;8(1):1 [PMID: 25621011]
  106. Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3811-6 [PMID: 25775593]
  107. PLoS Negl Trop Dis. 2015 Apr 21;9(4):e0003724 [PMID: 25897664]
  108. Curr Opin Insect Sci. 2014 Oct;4:35-41 [PMID: 28043406]
  109. Roux Arch Dev Biol. 1991 Sep;200(4):223-229 [PMID: 28305970]
  110. Dev Biol. 1973 Nov;35(1):36-46 [PMID: 4207110]
  111. Q Rev Biol. 1984 Dec;59(4):387-415 [PMID: 6393189]
  112. Dev Biol. 1984 May;103(1):85-95 [PMID: 6425099]
  113. J Mol Appl Genet. 1982;1(5):371-83 [PMID: 6818315]
  114. EMBO J. 1995 Oct 16;14(20):5027-36 [PMID: 7588631]
  115. Insect Biochem Mol Biol. 1995 Jul;25(7):845-56 [PMID: 7633469]
  116. Development. 1994 Nov;120(11):3275-87 [PMID: 7720567]
  117. Genetics. 1994 Aug;137(4):999-1018 [PMID: 7982580]
  118. Development. 1993 Jul;118(3):977-88 [PMID: 8076529]
  119. Dev Biol. 1993 Dec;160(2):388-404 [PMID: 8253272]
  120. J Biol Chem. 1996 Oct 11;271(41):25590-7 [PMID: 8810333]
  121. Science. 1996 Dec 6;274(5293):1646-52 [PMID: 8939845]
  122. Cell. 1996 Dec 27;87(7):1225-35 [PMID: 8980229]
  123. Genetics. 1997 Aug;146(4):1345-63 [PMID: 9258679]
  124. Nature. 1997 Aug 28;388(6645):891-5 [PMID: 9278052]
  125. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5616-20 [PMID: 9576932]
  126. Insect Biochem Mol Biol. 1998 Feb;28(2):83-9 [PMID: 9639874]

MeSH Term

Animals
Cluster Analysis
Drosophilidae
Gene Expression Profiling
Gene Expression Regulation, Developmental
Larva
Reproducibility of Results
Sequence Analysis, RNA
Transcription, Genetic
Transcriptome

Word Cloud

Created with Highcharts 10.0.0diapausegenescostatachangegeneexpressionalternativedirectontogenyRNAseqphotoperiodiccomplexlarvaldaysdevelopmentalmetabolictranscriptionassociatedinductionlarvaedrosophilidflyChymomyzacandidatelinkedupstreameventsphenotypic20-HEsignallingCdevelopmentseveralinvolvedshortdifferentialfirstrevealedBACKGROUND:DiapausemanyinvertebratesprimaryadaptivemeaningsecuresurvivalunfavourableseasonsstatearrestusuallyaccompaniedsuppressionenhancedtoleranceenvironmentalstressorsphotoperiodicallytriggeredinsectscentrallyturnedhormonalcontrolmoleculardetailstransitionpoorlyunderstoodUsingtechnologycharacterizedprofilesgoalidentifyingprocessesregulatoryeventuallyleadRESULTS:Shortdayphotoperiodtriggeringinhibition20-hydroxyecdysonephotoperiod-sensitivestagemRNAlevelskeybiosynthesisperceptionsignificantlydownregulatedHormonaltranslateddownregulationseriestranscriptsbroadinfluenceproteintranslationhistonemarkingmethylationsplicingchangesprobablyresultedblockadedeeprestructuringpathwaysindicatedcellcycleregulationmetabolismdetoxificationredoxbalanceprotectionoxidativestresscuticleformationsynthesisstorageproteinshighlyalterationexpressedalreadyextendednightwithinfourhourssignallongvalidatedresultsindependentqRT-PCRexperimentinvolvingwild-typeNPD-mutantnon-photoperiodicstrainsCONCLUSIONS:studystrongfollow-upfunctionalstudiesCandidatecoderegulatorsleadsswitchEarlytranscriptional

Similar Articles

Cited By (29)