Detecting time-specific differences between temporal nonlinear curves: Analyzing data from the visual world paradigm.

Jacob J Oleson, Joseph E Cavanaugh, Bob McMurray, Grant Brown
Author Information
  1. Jacob J Oleson: 1 Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA.
  2. Joseph E Cavanaugh: 1 Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA.
  3. Bob McMurray: 2 Department of Psychology, The University of Iowa, Iowa City, Iowa, USA.
  4. Grant Brown: 1 Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA.

Abstract

In multiple fields of study, time series measured at high frequencies are used to estimate population curves that describe the temporal evolution of some characteristic of interest. These curves are typically nonlinear, and the deviations of each series from the corresponding curve are highly autocorrelated. In this scenario, we propose a procedure to compare the response curves for different groups at specific points in time. The method involves fitting the curves, performing potentially hundreds of serially correlated tests, and appropriately adjusting the overall alpha level of the tests. Our motivating application comes from psycholinguistics and the visual world paradigm. We describe how the proposed technique can be adapted to compare fixation curves within subjects as well as between groups. Our results lead to conclusions beyond the scope of previous analyses.

Keywords

References

  1. J Mem Lang. 2008 Nov;59(4):475-494 [PMID: 19060958]
  2. Science. 1995 Jun 16;268(5217):1632-4 [PMID: 7777863]
  3. Acta Psychol (Amst). 2011 Jun;137(2):172-80 [PMID: 21067708]
  4. Stat Methods Med Res. 2016 Dec;25(6):2925-2938 [PMID: 24821002]
  5. Cogn Psychol. 1986 Jan;18(1):1-86 [PMID: 3753912]
  6. Cogn Sci. 2007 Feb;31(1):133-56 [PMID: 21635290]
  7. J Exp Psychol Hum Percept Perform. 2014 Feb;40(1):308-27 [PMID: 24041330]
  8. Stat Med. 2014 Aug 15;33(18):3130-46 [PMID: 24723495]
  9. Biometrics. 2002 Mar;58(1):121-8 [PMID: 11890306]
  10. Psychon Bull Rev. 2013 Oct;20(5):981-7 [PMID: 23456328]
  11. Cognition. 2002 Dec;86(2):B33-42 [PMID: 12435537]
  12. Cogn Psychol. 2001 Jun;42(4):317-67 [PMID: 11368527]
  13. J Speech Lang Hear Res. 2013 Aug;56(4):1328-45 [PMID: 23926331]
  14. Brain Lang. 2011 May;117(2):53-68 [PMID: 21371743]
  15. J Mem Lang. 2009 Jan;60(1):65-91 [PMID: 20046217]
  16. Psychol Sci. 2004 May;15(5):314-8 [PMID: 15102140]
  17. Psychol Aging. 2012 Mar;27(1):80-7 [PMID: 21707175]
  18. Psychon Bull Rev. 2011 Feb;18(1):141-9 [PMID: 21327343]
  19. J Exp Psychol Hum Percept Perform. 2008 Dec;34(6):1609-31 [PMID: 19045996]
  20. Cogn Psychol. 2010 Feb;60(1):1-39 [PMID: 19836014]

Grants

  1. M01 RR000059/NCRR NIH HHS
  2. P50 DC000242/NIDCD NIH HHS
  3. R01 DC008089/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Algorithms
Biostatistics
Cochlear Implants
Computer Simulation
Humans
Language
Logistic Models
Models, Statistical
Nonlinear Dynamics
Normal Distribution
Psycholinguistics
Time Factors

Word Cloud

Created with Highcharts 10.0.0curvestimeseriesmultipledescribetemporalnonlinearcomparegroupstestsvisualworldparadigmfieldsstudymeasuredhighfrequenciesusedestimatepopulationevolutioncharacteristicinteresttypicallydeviationscorrespondingcurvehighlyautocorrelatedscenarioproposeprocedureresponsedifferentspecificpointsmethodinvolvesfittingperformingpotentiallyhundredsseriallycorrelatedappropriatelyadjustingoverallalphalevelmotivatingapplicationcomespsycholinguisticsproposedtechniquecanadaptedfixationwithinsubjectswellresultsleadconclusionsbeyondscopepreviousanalysesDetectingtime-specificdifferencescurves:AnalyzingdataAutocorrelationbootstrapcomparisons

Similar Articles

Cited By