Copper-free click chemistry for attachment of biomolecules in magnetic tweezers.

Jorine M Eeftens, Jaco van der Torre, Daniel R Burnham, Cees Dekker
Author Information
  1. Jorine M Eeftens: Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands.
  2. Jaco van der Torre: Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands.
  3. Daniel R Burnham: Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands.
  4. Cees Dekker: Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands.

Abstract

BACKGROUND: Single-molecule techniques have proven to be an excellent approach for quantitatively studying DNA-protein interactions at the single-molecule level. In magnetic tweezers, a force is applied to a biopolymer that is anchored between a glass surface and a magnetic bead. Whereas the relevant force regime for many biological processes is above 20pN, problems arise at these higher forces, since the molecule of interest can detach from the attachment points at the surface or the bead. Whereas many recipes for attachment of biopolymers have been developed, most methods do not suffice, as the molecules break at high force, or the attachment chemistry leads to nonspecific cross reactions with proteins.
RESULTS: Here, we demonstrate a novel attachment method using copper-free click chemistry, where a DBCO-tagged DNA molecule is bound to an azide-functionalized surface. We use this new technique to covalently attach DNA to a flow cell surface. We show that this technique results in covalently linked tethers that are torsionally constrained and withstand very high forces (>100pN) in magnetic tweezers.
CONCLUSIONS: This novel anchoring strategy using copper-free click chemistry allows to specifically and covalently link biomolecules, and conduct high-force single-molecule experiments. Excitingly, this advance opens up the possibility for single-molecule experiments on DNA-protein complexes and molecules that are taken directly from cell lysate.

Keywords

References

  1. Nat Methods. 2011 Feb;8(2):123-7 [PMID: 21278722]
  2. Cell. 2005 Sep 9;122(5):683-92 [PMID: 16143101]
  3. Nucleic Acids Res. 2014 Oct;42(18):e137 [PMID: 25140010]
  4. Science. 1996 Feb 9;271(5250):795-9 [PMID: 8628994]
  5. Science. 1995 Dec 8;270(5242):1653-7 [PMID: 7502073]
  6. Chem Soc Rev. 2010 Apr;39(4):1272-9 [PMID: 20349533]
  7. J Am Chem Soc. 2004 Nov 24;126(46):15046-7 [PMID: 15547999]
  8. Chem Commun (Camb). 2013 Aug 11;49(62):6959-61 [PMID: 23814786]
  9. Opt Express. 2006 Dec 11;14(25):12517-31 [PMID: 19529687]
  10. Nucleic Acids Res. 2010 Jul;38(12):4133-42 [PMID: 20197317]
  11. Acta Biochim Pol. 2006;53(1):93-100 [PMID: 16410837]
  12. Biophys J. 2012 May 16;102(10):2362-71 [PMID: 22677390]
  13. Biomech Model Mechanobiol. 2006 Mar;5(1):1-16 [PMID: 16489478]
  14. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4776-80 [PMID: 15037753]
  15. Nat Methods. 2008 Jun;5(6):491-505 [PMID: 18511917]
  16. PLoS One. 2012;7(8):e41432 [PMID: 22870220]
  17. FEBS Lett. 2006 Jan 23;580(2):505-9 [PMID: 16388805]
  18. J Biochem Biophys Methods. 2001 Feb 26;47(3):221-31 [PMID: 11245893]
  19. Nucleic Acids Res. 2009 Jul;37(12):4089-99 [PMID: 19429893]
  20. Colloids Surf B Biointerfaces. 2009 Jul 1;71(2):200-7 [PMID: 19329289]
  21. J Cell Biol. 1983 Aug;97(2):542-8 [PMID: 6885908]
  22. Nucleic Acids Res. 2010 Oct;38(18):6176-85 [PMID: 20497998]
  23. J Phys Chem B. 2008 May 15;112(19):5968-76 [PMID: 18251532]
  24. J Cell Sci. 1994 Apr;107 ( Pt 4):891-902 [PMID: 8056845]
  25. Angew Chem Int Ed Engl. 2009;48(38):6974-98 [PMID: 19714693]
  26. Annu Rev Biophys Biophys Chem. 1988;17:431-49 [PMID: 3293594]
  27. Biophys J. 1996 Jul;71(1):451-65 [PMID: 8804628]
  28. Biophys J. 2010 Aug 9;99(4):1292-302 [PMID: 20713015]
  29. Science. 1999 Mar 12;283(5408):1727-30 [PMID: 10073936]
  30. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10180-5 [PMID: 16801548]
  31. Nanoscale. 2013 Aug 21;5(16):7209-12 [PMID: 23828172]
  32. Biomaterials. 2011 Mar;32(8):2043-51 [PMID: 21163521]
  33. Bioconjug Chem. 2011 Jun 15;22(6):1239-48 [PMID: 21542606]
  34. Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75 [PMID: 16607289]
  35. Cell Rep. 2015 Jan 13;10(2):216-25 [PMID: 25578730]
  36. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16793-7 [PMID: 17942682]
  37. Biophys J. 2009 Jun 17;96(12):5040-9 [PMID: 19527664]
  38. PLoS One. 2012;7(9):e46306 [PMID: 23050009]

Grants

  1. 247072/European Research Council

Word Cloud

Created with Highcharts 10.0.0chemistryattachmentmagnetictweezerssurfaceclicksingle-moleculeforceDNAcovalentlyDNA-proteinbeadWhereasmanyforcesmoleculemoleculeshighreactionsnovelusingcopper-freetechniquecellbiomoleculesexperimentsCopper-freeBACKGROUND:Single-moleculetechniquesprovenexcellentapproachquantitativelystudyinginteractionslevelappliedbiopolymeranchoredglassrelevantregimebiologicalprocesses20pNproblemsarisehighersinceinterestcandetachpointsrecipesbiopolymersdevelopedmethodssufficebreakleadsnonspecificcrossproteinsRESULTS:demonstratemethodDBCO-taggedboundazide-functionalizedusenewattachflowshowresultslinkedtetherstorsionallyconstrainedwithstand>100pNCONCLUSIONS:anchoringstrategyallowsspecificallylinkconducthigh-forceExcitinglyadvanceopenspossibilitycomplexestakendirectlylysateimmobilizationMagneticSPAACSurface

Similar Articles

Cited By