Procedural Factors That Affect Psychophysical Measures of Spatial Selectivity in Cochlear Implant Users.

Stefano Cosentino, John M Deeks, Robert P Carlyon
Author Information
  1. Stefano Cosentino: MRC Cognition and Brain Sciences Unit, Cambridge, UK Stefano.Cosentino@mrc-cbu.cam.ac.uk.
  2. John M Deeks: MRC Cognition and Brain Sciences Unit, Cambridge, UK.
  3. Robert P Carlyon: MRC Cognition and Brain Sciences Unit, Cambridge, UK.

Abstract

Behavioral measures of spatial selectivity in cochlear implants are important both for guiding the programing of individual users' implants and for the evaluation of different stimulation methods. However, the methods used are subject to a number of confounding factors that can contaminate estimates of spatial selectivity. These factors include off-site listening, charge interactions between masker and probe pulses in interleaved masking paradigms, and confusion effects in forward masking. We review the effects of these confounds and discuss methods for minimizing them. We describe one such method in which the level of a 125-pps masker is adjusted so as to mask a 125-pps probe, and where the masker and probe pulses are temporally interleaved. Five experiments describe the method and evaluate the potential roles of the different potential confounding factors. No evidence was obtained for off-site listening of the type observed in acoustic hearing. The choice of the masking paradigm was shown to alter the measured spatial selectivity. For short gaps between masker and probe pulses, both facilitation and refractory mechanisms had an effect on masking; this finding should inform the choice of stimulation rate in interleaved masking experiments. No evidence for confusion effects in forward masking was revealed. It is concluded that the proposed method avoids many potential confounds but that the choice of method should depend on the research question under investigation.

Keywords

References

  1. J Acoust Soc Am. 1978 Feb;63(2):524-32 [PMID: 670549]
  2. J Acoust Soc Am. 1972 Apr;51(4):1219-23 [PMID: 5032936]
  3. J Acoust Soc Am. 1983 Sep;74(3):750-3 [PMID: 6630731]
  4. Hear Res. 1984 Jun;14(3):205-23 [PMID: 6480510]
  5. J Acoust Soc Am. 1985 Dec;78(6):1966-76 [PMID: 4078173]
  6. J Acoust Soc Am. 1991 Oct;90(4 Pt 1):1857-66 [PMID: 1960279]
  7. J Acoust Soc Am. 1996 Oct;100(4 Pt 1):2393-414 [PMID: 8865646]
  8. Audiol Neurootol. 1996 Sep-Oct;1(5):278-92 [PMID: 9390809]
  9. J Acoust Soc Am. 1998 Aug;104(2 Pt 1):1023-38 [PMID: 9714922]
  10. J Acoust Soc Am. 1998 Dec;104(6):3500-10 [PMID: 9857509]
  11. J Acoust Soc Am. 2008 Mar;123(3):1522-43 [PMID: 18345841]
  12. Ear Hear. 2006 Dec;27(6):645-57 [PMID: 17086076]
  13. J Acoust Soc Am. 2006 May;119(5 Pt 1):2994-3002 [PMID: 16708955]
  14. Otol Neurotol. 2008 Oct;29(7):920-8 [PMID: 18667935]
  15. J Assoc Res Otolaryngol. 2009 Sep;10(3):447-57 [PMID: 19495879]
  16. J Acoust Soc Am. 2010 Jan;127(1):326-38 [PMID: 20058980]
  17. Hear Res. 2011 May;275(1-2):130-8 [PMID: 21168479]
  18. Ear Hear. 2011 Jul-Aug;32(4):436-44 [PMID: 21178633]
  19. Hear Res. 2012 Jan;283(1-2):45-58 [PMID: 22138630]
  20. Hear Res. 2012 Feb;284(1-2):16-24 [PMID: 22230370]
  21. J Acoust Soc Am. 2012 Mar;131(3):2209-24 [PMID: 22423717]
  22. Ear Hear. 2012 Jul-Aug;33(4):489-96 [PMID: 22517184]
  23. J Acoust Soc Am. 2013 Jun;133(6):4109-23 [PMID: 23742363]
  24. J Acoust Soc Am. 2013 Oct;134(4):EL314-20 [PMID: 24116536]
  25. Audiol Neurootol. 2014;19(6):400-11 [PMID: 25402603]
  26. Trends Hear. 2015;19. pii: 2331216515569792. doi: 10.1177/2331216515569792 [PMID: 25656797]
  27. J Assoc Res Otolaryngol. 2015 Apr;16(2):273-84 [PMID: 25644786]
  28. Otol Neurotol. 2001 May;22(3):340-9 [PMID: 11347637]
  29. J Acoust Soc Am. 2001 Jun;109(6):2921-33 [PMID: 11425134]
  30. Ear Hear. 2001 Aug;22(4):268-78 [PMID: 11527034]
  31. J Acoust Soc Am. 2003 Apr;113(4 Pt 1):2054-63 [PMID: 12703716]
  32. Hear Res. 2003 May;179(1-2):72-87 [PMID: 12742240]
  33. Hear Res. 2003 Aug;182(1-2):77-87 [PMID: 12948604]
  34. J Assoc Res Otolaryngol. 2004 Mar;5(1):32-48 [PMID: 14564662]
  35. J Acoust Soc Am. 2004 Jul;116(1):452-68 [PMID: 15296005]
  36. J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+ [PMID: 5541744]
  37. J Acoust Soc Am. 1982 Apr;71(4):942-5 [PMID: 7085981]

Grants

  1. G63/RNID
  2. MC-A060-5PQ70/Medical Research Council

MeSH Term

Auditory Threshold
Cochlear Implantation
Cochlear Implants
Female
Humans
Male
Perceptual Masking
Psychoacoustics
Sensitivity and Specificity
Spatial Processing
Speech Perception

Word Cloud

Created with Highcharts 10.0.0maskingspatialselectivitymaskerprobemethodmethodsfactorspulsesinterleavedeffectspotentialchoicecochlearimplantsdifferentstimulationconfoundingoff-sitelisteningconfusionforwardconfoundsdescribe125-ppsexperimentsevidenceBehavioralmeasuresimportantguidingprogramingindividualusers'evaluationHoweverusedsubjectnumbercancontaminateestimatesincludechargeinteractionsparadigmsreviewdiscussminimizingoneleveladjustedmasktemporallyFiveevaluaterolesobtainedtypeobservedacoustichearingparadigmshownaltermeasuredshortgapsfacilitationrefractorymechanismseffectfindinginformraterevealedconcludedproposedavoidsmanydependresearchquestioninvestigationProceduralFactorsAffectPsychophysicalMeasuresSpatialSelectivityCochlearImplantUsersimplantpsychophysicaltuningcurve

Similar Articles

Cited By