RAP1-GTPase signaling and platelet function.

Lucia Stefanini, Wolfgang Bergmeier
Author Information
  1. Lucia Stefanini: Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.
  2. Wolfgang Bergmeier: Department of Biochemistry and Biophysics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. bergmeie@email.unc.edu.

Abstract

Platelets are critical for hemostasis, i.e., the body's ability to prevent blood loss at sites of vascular injury. They patrol the vasculature in a quiescent, non-adhesive state for approximately 10 days, after which they are removed from circulation by phagocytic cells of the reticulo-endothelial system. At sites of vascular injury, they promptly shift to an activated, adhesive state required for the formation of a hemostatic plug. The small GTPase RAP1 is a critical regulator of platelet adhesiveness. Our recent studies demonstrate that the antagonistic balance between the RAP1 regulators, CalDAG-GEFI and RASA3, is critical for the modulation of platelet adhesiveness, both in circulation and at sites of vascular injury. The RAP1 activator CalDAG-GEFI responds to small changes in the cytoplasmic calcium concentration and thus provides sensitivity and speed to the activation response, essential for efficient platelet adhesion under conditions of hemodynamic shear stress. The RAP1 inhibitor RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI-dependent RAP1 activation. Upon cellular stimulation, it is turned off by P2Y12 signaling to enable sustained RAP1 activation, required for the formation of a stable hemostatic plug. This review will summarize important studies that elucidated the signaling pathways that control RAP1 activation in platelets.

Keywords

References

  1. J Signal Transduct. 2012;2012:412089 [PMID: 22745904]
  2. Biol Open. 2012 Sep 15;1(9):857-62 [PMID: 23213479]
  3. Br J Haematol. 2009 Nov;147(4):415-30 [PMID: 19656155]
  4. Circ Res. 2014 Mar 28;114(7):1174-84 [PMID: 24677237]
  5. J Biol Chem. 2007 Feb 9;282(6):3413-7 [PMID: 17179160]
  6. J Biol Chem. 2011 Nov 11;286(45):39466-77 [PMID: 21940635]
  7. J Biol Chem. 2003 Jan 3;278(1):131-8 [PMID: 12407113]
  8. Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):434-41 [PMID: 22075250]
  9. Curr Biol. 1997 Dec 1;7(12):1007-10 [PMID: 9382842]
  10. Blood. 2006 Apr 1;107(7):2728-35 [PMID: 16357324]
  11. Microcirculation. 2009 Jan;16(1):58-83 [PMID: 19191170]
  12. Biochem Soc Trans. 2006 Nov;34(Pt 5):846-50 [PMID: 17052212]
  13. Bioorg Med Chem. 2004 Sep 1;12(17):4575-83 [PMID: 15358285]
  14. Blood. 2008 Sep 1;112(5):1696-703 [PMID: 18544684]
  15. Nat Med. 2004 Sep;10(9):982-6 [PMID: 15334074]
  16. J Clin Invest. 2005 Mar;115(3):680-7 [PMID: 15696195]
  17. Br J Haematol. 1995 May;90(1):180-6 [PMID: 7786783]
  18. EMBO J. 1997 Jan 15;16(2):252-9 [PMID: 9029146]
  19. J Mol Med (Berl). 2011 Feb;89(2):109-21 [PMID: 21058007]
  20. Biochem J. 2007 Sep 1;406(2):223-36 [PMID: 17523924]
  21. Mol Cell Proteomics. 2014 Dec;13(12):3435-45 [PMID: 25205226]
  22. Biochem J. 1994 Mar 15;298 Pt 3:739-42 [PMID: 8141791]
  23. Blood. 2014 Apr 17;123(16):e37-45 [PMID: 24523238]
  24. Blood. 2012 Oct 11;120(15):e73-82 [PMID: 22869793]
  25. EMBO J. 2010 Apr 7;29(7):1205-14 [PMID: 20186121]
  26. Nature. 1995 Aug 10;376(6540):527-30 [PMID: 7637787]
  27. J Biol Chem. 2002 Jun 28;277(26):23382-90 [PMID: 11970953]
  28. J Thromb Haemost. 2014 Dec;12(12):2113-9 [PMID: 25287077]
  29. Blood. 2009 Sep 17;114(12):2506-14 [PMID: 19628710]
  30. Cell. 2007 Jun 1;129(5):865-77 [PMID: 17540168]
  31. Mol Cell Biol. 2000 Feb;20(3):779-85 [PMID: 10629034]
  32. Annu Rev Cell Dev Biol. 2011;27:321-45 [PMID: 21663444]
  33. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12819-24 [PMID: 12239348]
  34. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):35-47 [PMID: 9838034]
  35. Br J Haematol. 1994 Oct;88(2):372-82 [PMID: 7803284]
  36. J Thromb Haemost. 2015 Jun;13 Suppl 1:S10-6 [PMID: 26149010]
  37. Nat Med. 2011;17(11):1423-36 [PMID: 22064432]
  38. J Exp Med. 2014 Jun 30;211(7):1349-62 [PMID: 24958846]
  39. Circ Res. 2014 Mar 28;114(7):1204-19 [PMID: 24677239]
  40. J Biol Chem. 2000 Sep 8;275(36):28261-8 [PMID: 10869341]
  41. Blood. 2011 Oct 6;118(14):e101-11 [PMID: 21596849]
  42. Blood. 2011 Jan 20;117(3):1005-13 [PMID: 20971951]
  43. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13278-83 [PMID: 9789079]
  44. Elife. 2013;2:e00813 [PMID: 23908768]
  45. J Biol Chem. 2003 Oct 10;278(41):39489-96 [PMID: 12885767]
  46. J Biol Chem. 2002 Jul 12;277(28):25715-21 [PMID: 11994301]
  47. J Biol Chem. 2002 Apr 5;277(14):12009-15 [PMID: 11815620]
  48. Mol Cell Biol. 2009 Jul;29(14):3929-40 [PMID: 19433443]
  49. PLoS Genet. 2014 Jun;10(6):e1004420 [PMID: 24967784]
  50. J Clin Invest. 2015 Apr;125(4):1419-32 [PMID: 25705885]

Grants

  1. P01 HL120846/NHLBI NIH HHS
  2. R01 HL121650/NHLBI NIH HHS

MeSH Term

Animals
Blood Platelets
Calcium
Guanine Nucleotide Exchange Factors
Humans
Mice
Mice, Knockout
Phosphatidylinositol 4,5-Diphosphate
Platelet Activation
Platelet Adhesiveness
Receptors, Cytoplasmic and Nuclear
Receptors, Purinergic P2Y12
Shelterin Complex
Signal Transduction
Telomere-Binding Proteins
Vascular System Injuries
rap1 GTP-Binding Proteins

Chemicals

Guanine Nucleotide Exchange Factors
P2RY12 protein, human
Phosphatidylinositol 4,5-Diphosphate
RASGRP2 protein, human
Receptors, Cytoplasmic and Nuclear
Receptors, Purinergic P2Y12
Shelterin Complex
TERF2IP protein, human
Telomere-Binding Proteins
inositol-1,3,4,5-tetrakisphosphate receptor
rap1 GTP-Binding Proteins
Calcium

Word Cloud

Created with Highcharts 10.0.0RAP1plateletactivationcriticalsitesvascularinjurysignalingPlateletsquiescentstatecirculationrequiredformationhemostaticplugsmallGTPaseadhesivenessstudiesCalDAG-GEFIRASA3plateletshemostasisiebody'sabilitypreventbloodlosspatrolvasculaturenon-adhesiveapproximately10 daysremovedphagocyticcellsreticulo-endothelialsystempromptlyshiftactivatedadhesiveregulatorrecentdemonstrateantagonisticbalanceregulatorsmodulationactivatorrespondschangescytoplasmiccalciumconcentrationthusprovidessensitivityspeedresponseessentialefficientadhesionconditionshemodynamicshearstressinhibitorensurescirculatingremainrestrainingCalDAG-GEFI-dependentUponcellularstimulationturnedP2Y12enablesustainedstablereviewwillsummarizeimportantelucidatedpathwayscontrolRAP1-GTPasefunctionSignalingThrombosis

Similar Articles

Cited By