Signaling in the phytomicrobiome: breadth and potential.

Donald L Smith, Sowmyalakshmi Subramanian, John R Lamont, Margaret Bywater-Ekegärd
Author Information
  1. Donald L Smith: Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QC Canada.
  2. Sowmyalakshmi Subramanian: Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QC Canada.
  3. John R Lamont: Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QC Canada.
  4. Margaret Bywater-Ekegärd: Inocucor Technologies Inc., Montréal, QC Canada.

Abstract

Higher plants have evolved intimate, complex, subtle, and relatively constant relationships with a suite of microbes, the phytomicrobiome. Over the last few decades we have learned that plants and microbes can use molecular signals to communicate. This is well-established for the legume-rhizobia nitrogen-fixing symbiosis, and reasonably elucidated for mycorrhizal associations. Bacteria within the phytomircobiome communicate among themselves through quorum sensing and other mechanisms. Plants also detect materials produced by potential pathogens and activate pathogen-response systems. This intercommunication dictates aspects of plant development, architecture, and productivity. Understanding this signaling via biochemical, genomics, proteomics, and metabolomic studies has added valuable knowledge regarding development of effective, low-cost, eco-friendly crop inputs that reduce fossil fuel intense inputs. This knowledge underpins phytomicrobiome engineering: manipulating the beneficial consortia that manufacture signals/products that improve the ability of the plant-phytomicrobiome community to deal with various soil and climatic conditions, leading to enhanced overall crop plant productivity.

Keywords

References

  1. Curr Opin Plant Biol. 2014 Aug;20:118-26 [PMID: 24922556]
  2. Am J Bot. 2013 Sep;100(9):1738-50 [PMID: 23935113]
  3. ISME J. 2012 Feb;6(2):259-72 [PMID: 21796217]
  4. J Biol Chem. 2013 Feb 15;288(7):4502-12 [PMID: 23293028]
  5. J Appl Microbiol. 2004;97(3):504-11 [PMID: 15281930]
  6. Ann Bot. 2013 May;111(5):743-67 [PMID: 23478942]
  7. Nature. 2013 Sep 5;501(7465):18 [PMID: 24005397]
  8. Mol Plant Microbe Interact. 2000 Jun;13(6):637-48 [PMID: 10830263]
  9. Mol Plant Microbe Interact. 2013 Apr;26(4):451-60 [PMID: 23216086]
  10. Res Microbiol. 2012 Sep-Oct;163(8):500-10 [PMID: 22989671]
  11. Front Microbiol. 2014 Feb 19;5:64 [PMID: 24600444]
  12. J Plant Physiol. 2007 Oct;164(10):1391-3 [PMID: 17485139]
  13. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13715-20 [PMID: 25225376]
  14. Trends Plant Sci. 2008 Sep;13(9):492-8 [PMID: 18701339]
  15. Plant Sci. 2012 Sep;193-194:96-102 [PMID: 22794922]
  16. Crit Rev Microbiol. 2010 Aug;36(3):232-44 [PMID: 20635858]
  17. Nat Rev Microbiol. 2013 Apr;11(4):252-63 [PMID: 23493145]
  18. Appl Environ Microbiol. 2013 Sep;79(17):5291-301 [PMID: 23811512]
  19. Planta. 2009 Mar;229(4):747-55 [PMID: 19083012]
  20. World J Microbiol Biotechnol. 2012 Apr;28(4):1327-50 [PMID: 22805914]
  21. Appl Environ Microbiol. 2012 Nov;78(21):7511-8 [PMID: 22865062]
  22. J Basic Microbiol. 2008 Apr;48(2):118-24 [PMID: 18383223]
  23. Curr Opin Plant Biol. 2011 Oct;14(5):519-29 [PMID: 21704551]
  24. Microbiol Res. 2014 Jul-Aug;169(7-8):609-15 [PMID: 24280513]
  25. New Phytol. 2013 Apr;198(1):264-273 [PMID: 23347044]
  26. J Exp Bot. 2002 Sep;53(376):1929-34 [PMID: 12177132]
  27. New Phytol. 2012 Sep;195(4):857-871 [PMID: 22738134]
  28. FEMS Microbiol Ecol. 2010 Aug;73(2):197-214 [PMID: 20528987]
  29. Curr Opin Plant Biol. 2015 Apr;24:82-6 [PMID: 25710740]
  30. PLoS One. 2012;7(2):e31571 [PMID: 22348109]
  31. Mol Cell Proteomics. 2012 Apr;11(4):M111.014555 [PMID: 22215637]
  32. Nat Biotechnol. 2012 Oct;30(10):961-2 [PMID: 23051815]
  33. J Exp Bot. 2012 May;63(9):3429-44 [PMID: 22213816]
  34. ISME J. 2012 Oct;6(10):1812-22 [PMID: 22534606]
  35. Annu Rev Phytopathol. 2011;49:291-315 [PMID: 19400639]
  36. Front Plant Sci. 2013 Oct 30;4:432 [PMID: 24198821]
  37. ISME J. 2014 Apr;8(4):790-803 [PMID: 24196324]
  38. Plant Physiol. 2002 Feb;128(2):523-33 [PMID: 11842156]
  39. Mol Plant Microbe Interact. 2011 Aug;24(8):867-78 [PMID: 21469937]
  40. J Plant Physiol. 2008 Sep 8;165(13):1342-51 [PMID: 18190997]
  41. Annu Rev Microbiol. 2009;63:541-56 [PMID: 19575558]
  42. Biomed Res Int. 2013;2013:863240 [PMID: 23957006]
  43. Biotechnol Lett. 2010 Nov;32(11):1559-70 [PMID: 20635120]
  44. Braz J Med Biol Res. 2011 Dec;44(12):1215-21 [PMID: 22042267]
  45. Front Microbiol. 2014 Jun 04;5:148 [PMID: 24926286]
  46. World J Microbiol Biotechnol. 2012 Jul;28(7):2541-50 [PMID: 22806160]
  47. PLoS One. 2012;7(10):e48479 [PMID: 23119032]
  48. Microbiol Res. 2008;163(3):345-9 [PMID: 16904303]
  49. J Chem Ecol. 2012 Jun;38(6):704-13 [PMID: 22648507]
  50. FEMS Microbiol Lett. 2013 Nov;348(1):1-10 [PMID: 23895412]
  51. FEMS Microbiol Lett. 2009 Apr;293(2):220-31 [PMID: 19260963]
  52. Curr Opin Microbiol. 2011 Feb;14(1):54-61 [PMID: 21215683]
  53. Nat Rev Genet. 2012 Mar 13;13(4):260-70 [PMID: 22411464]
  54. Planta. 2003 Jan;216(3):437-45 [PMID: 12520335]
  55. Science. 2012 Oct 26;338(6106):485-6 [PMID: 23112324]
  56. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2389-93 [PMID: 16592251]
  57. Nature. 2012 Aug 2;488(7409):91-5 [PMID: 22859207]
  58. Mol Ecol. 2014 Mar;23(6):1584-1593 [PMID: 24050702]
  59. ISME J. 2013 Dec;7(12):2248-58 [PMID: 23864127]
  60. Plant Physiol. 2014 Oct;166(2):701-19 [PMID: 25118253]
  61. Plant Physiol. 1995 Jul;108(3):961-968 [PMID: 12228519]
  62. Annu Rev Genet. 2011;45:119-44 [PMID: 21838550]
  63. PLoS One. 2013;8(1):e53987 [PMID: 23326555]
  64. Funct Plant Biol. 2002 Apr;29(4):417-423 [PMID: 32689486]
  65. Science. 2006 Jan 27;311(5760):484-9 [PMID: 16439654]
  66. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  67. J Environ Manage. 2014 Feb 15;134:1-7 [PMID: 24463051]
  68. Plant Physiol. 2013 May;162(1):304-18 [PMID: 23542149]
  69. Nature. 2004 Jun 24;429(6994):870-3 [PMID: 15215863]
  70. Plant J. 2005 Oct;44(2):195-207 [PMID: 16212600]
  71. Genome Biol. 2013 Jun 25;14(6):209 [PMID: 23805896]
  72. Front Plant Sci. 2014 Apr 08;5:131 [PMID: 24782873]
  73. Microbiol Res. 2011 Dec 20;167(1):14-9 [PMID: 21501957]
  74. Sci Rep. 2013;3:1955 [PMID: 23739741]
  75. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 [PMID: 20668239]
  76. Annu Rev Phytopathol. 2012;50:451-73 [PMID: 22920561]
  77. Mol Cell Proteomics. 2012 Sep;11(9):724-44 [PMID: 22683509]
  78. Plant Physiol. 1994 Aug;105(4):1139-1147 [PMID: 12232271]
  79. FEBS Lett. 2012 Apr 24;586(8):1147-53 [PMID: 22575649]
  80. J Exp Bot. 2012 Jun;63(11):4033-44 [PMID: 22553287]
  81. Plant Physiol. 2012 Nov;160(3):1642-61 [PMID: 22972705]
  82. Ecology. 2006 Jan;87(1):53-63 [PMID: 16634296]
  83. Mol Cell Proteomics. 2012 Nov;11(11):1140-55 [PMID: 22843990]
  84. New Phytol. 2015 Jan;205(2):468-71 [PMID: 25521069]
  85. Plant Physiol. 2008 Nov;148(3):1547-56 [PMID: 18820082]
  86. Microb Ecol. 2009 Nov;58(4):921-9 [PMID: 19466478]
  87. Cell Host Microbe. 2011 Oct 20;10(4):348-58 [PMID: 22018235]
  88. Phytopathology. 2004 Nov;94(11):1259-66 [PMID: 18944464]
  89. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1743-52 [PMID: 22586093]
  90. Am J Bot. 2013 Sep;100(9):1689-91 [PMID: 24008514]
  91. J Environ Sci (China). 2013 Feb 1;25(2):357-66 [PMID: 23596957]
  92. BMC Plant Biol. 2014 May 13;14:130 [PMID: 24884531]
  93. Genet Mol Biol. 2012 Dec;35(4 (suppl)):1044-51 [PMID: 23411488]
  94. Curr Opin Plant Biol. 2013 Feb;16(1):118-27 [PMID: 23246268]
  95. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  96. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]

Word Cloud

Created with Highcharts 10.0.0phytomicrobiomeplantcropplantsmicrobesmolecularsignalscommunicatepotentialdevelopmentproductivityknowledgeinputsHigherevolvedintimatecomplexsubtlerelativelyconstantrelationshipssuitelastdecadeslearnedcanusewell-establishedlegume-rhizobianitrogen-fixingsymbiosisreasonablyelucidatedmycorrhizalassociationsBacteriawithinphytomircobiomeamongquorumsensingmechanismsPlantsalsodetectmaterialsproducedpathogensactivatepathogen-responsesystemsintercommunicationdictatesaspectsarchitectureUnderstandingsignalingviabiochemicalgenomicsproteomicsmetabolomicstudiesaddedvaluableregardingeffectivelow-costeco-friendlyreducefossilfuelintenseunderpinsengineering:manipulatingbeneficialconsortiamanufacturesignals/productsimproveabilityplant-phytomicrobiomecommunitydealvarioussoilclimaticconditionsleadingenhancedoverallSignalingphytomicrobiome:breadthholobiontgrowthpromotingrhizobacteria

Similar Articles

Cited By