Inter-organismal signaling and management of the phytomicrobiome.

Donald L Smith, Dana Praslickova, Gayathri Ilangumaran
Author Information
  1. Donald L Smith: Plant Science Department, McGill University/Macdonald Campus, Sainte Anne de Bellevue , QC, Canada.
  2. Dana Praslickova: Plant Science Department, McGill University/Macdonald Campus, Sainte Anne de Bellevue , QC, Canada.
  3. Gayathri Ilangumaran: Plant Science Department, McGill University/Macdonald Campus, Sainte Anne de Bellevue , QC, Canada.

Abstract

The organisms of the phytomicrobiome use signal compounds to regulate aspects of each other's behavior. Legumes use signals (flavonoids) to regulate rhizobial nod gene expression during establishment of the legume-rhizobia N2-fixation symbiosis. Lipochitooligosaccharides (LCOs) produced by rhizobia act as return signals to the host plant and are recognized by specific lysine motif receptor like kinases, which triggers a signal cascade leading to nodulation of legume roots. LCOs also enhance plant growth, particularly when plants are stressed. Chitooligosaccharides activate plant immune responses, providing enhanced resistance against diseases. Co-inoculation of rhizobia with other plant growth promoting rhizobacteria (PGPR) can improve nodulation and crop growth. PGPR also alleviate plant stress by secreting signal compounds including phytohormones and antibiotics. Thuricin 17, a small bacteriocin produced by a phytomicrobiome member promotes plant growth. Lumichrome synthesized by soil rhizobacteria function as stress-sensing cues. Inter-organismal signaling can be used to manage/engineer the phytomicrobiome to enhance crop productivity, particularly in the face of stress. Stressful conditions are likely to become more frequent and more severe because of climate change.

Keywords

References

  1. Planta. 2003 Jan;216(3):437-45 [PMID: 12520335]
  2. Planta. 1994;193(3):413-20 [PMID: 7764873]
  3. New Phytol. 2005 Mar;165(3):683-701 [PMID: 15720680]
  4. Science. 2005 Jun 17;308(5729):1786-9 [PMID: 15961668]
  5. Trends Biotechnol. 2014 May;32(5):271-80 [PMID: 24735678]
  6. PLoS One. 2013 May 29;8(5):e64377 [PMID: 23734198]
  7. Science. 2001 Oct 26;294(5543):804-8 [PMID: 11679658]
  8. Int J Mol Sci. 2013 Aug 20;14(8):17122-46 [PMID: 23965976]
  9. Trends Immunol. 2014 Jul;35(7):345-51 [PMID: 24946686]
  10. Front Plant Sci. 2012 Jun 11;3:120 [PMID: 22701462]
  11. J Exp Bot. 2012 May;63(9):3429-44 [PMID: 22213816]
  12. Plant Signal Behav. 2012 Feb;7(2):178-81 [PMID: 22307043]
  13. Front Plant Sci. 2013 May 30;4:165 [PMID: 23755059]
  14. Nat Commun. 2014 Sep 19;5:4983 [PMID: 25236855]
  15. Front Plant Sci. 2014 Apr 08;5:131 [PMID: 24782873]
  16. Curr Opin Plant Biol. 2011 Aug;14(4):451-7 [PMID: 21489861]
  17. J Exp Bot. 2012 Jan;63(1):393-401 [PMID: 21934117]
  18. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  19. J Appl Microbiol. 2007 Nov;103(5):1355-65 [PMID: 17953546]
  20. J Chem Ecol. 2012 Jun;38(6):704-13 [PMID: 22648507]
  21. Science. 2005 Jun 17;308(5729):1789-91 [PMID: 15961669]
  22. New Phytol. 2005 May;166(2):439-44 [PMID: 15819908]
  23. Nature. 2001 Jun 14;411(6839):826-33 [PMID: 11459065]
  24. Planta. 2009 Mar;229(4):747-55 [PMID: 19083012]
  25. Mol Plant Microbe Interact. 2014 Jul;27(7):655-63 [PMID: 24678831]
  26. Nature. 2002 Jun 27;417(6892):962-6 [PMID: 12087406]
  27. Science. 2013 Sep 20;341(6152):1384-7 [PMID: 24009356]
  28. Plant J. 2011 Jan;65(2):169-80 [PMID: 21223383]
  29. Plant Physiol. 2007 Jun;144(2):623-36 [PMID: 17449649]
  30. Mycorrhiza. 2011 Apr;21(3):173-81 [PMID: 20544230]
  31. J Exp Bot. 2002 Sep;53(376):1929-34 [PMID: 12177132]
  32. Appl Environ Microbiol. 1991 Sep;57(9):2767-70 [PMID: 1768151]
  33. Plant Physiol. 2014 Oct;166(2):689-700 [PMID: 25059708]
  34. Nature. 2011 Nov 16;480(7378):520-4 [PMID: 22089132]
  35. Plant Physiol. 2010 Feb;152(2):541-52 [PMID: 19933387]
  36. Curr Biol. 2008 Jul 22;18(14):1078-83 [PMID: 18639458]
  37. Appl Environ Microbiol. 2005 Dec;71(12):8500-5 [PMID: 16332840]
  38. Front Plant Sci. 2015 Jul 14;6:507 [PMID: 26236319]
  39. Trends Plant Sci. 2015 Mar;20(3):186-94 [PMID: 25543258]
  40. Annu Rev Microbiol. 2005;59:19-42 [PMID: 16153162]
  41. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12 ):4928-32 [PMID: 18316735]
  42. Science. 2010 Feb 26;327(5969):1122-6 [PMID: 20185722]
  43. Nature. 2012 Aug 2;488(7409):91-5 [PMID: 22859207]
  44. Front Plant Sci. 2015 Jun 02;6:401 [PMID: 26082790]
  45. Nat Rev Microbiol. 2013 Apr;11(4):252-63 [PMID: 23493145]
  46. Plant Physiol. 2011 Nov;157(3):1407-18 [PMID: 21940998]
  47. Bioresour Technol. 2008 Jul;99(11):4544-50 [PMID: 17826983]
  48. J Biol Chem. 2011 Sep 16;286(37):32178-87 [PMID: 21775427]
  49. Front Plant Sci. 2015 Jul 01;6:491 [PMID: 26191069]
  50. J Bacteriol. 2007 Dec;189(23):8741-5 [PMID: 17921312]
  51. Plant Cell. 1996 Oct;8(10):1899-1913 [PMID: 12239369]
  52. J Chem Ecol. 2013 Feb;39(2):283-97 [PMID: 23397456]
  53. Plant Cell Environ. 2012 Feb;35(2):245-58 [PMID: 21819415]
  54. Plant Biotechnol J. 2014 Dec;12(9):1193-206 [PMID: 25431199]
  55. Trends Plant Sci. 2012 Feb;17(2):73-90 [PMID: 22209038]
  56. FEMS Microbiol Lett. 1996 Sep 1;142(2-3):271-6 [PMID: 8810510]

Word Cloud

Created with Highcharts 10.0.0plantphytomicrobiomegrowthsignalsignalscropstressusecompoundsregulateLCOsproducedrhizobianodulationalsoenhanceparticularlyrhizobacteriaPGPRcanInter-organismalsignalingproductivityorganismsaspectsother'sbehaviorLegumesflavonoidsrhizobialnodgeneexpressionestablishmentlegume-rhizobiaN2-fixationsymbiosisLipochitooligosaccharidesactreturnhostrecognizedspecificlysinemotifreceptorlikekinasestriggerscascadeleadinglegumerootsplantsstressedChitooligosaccharidesactivateimmuneresponsesprovidingenhancedresistancediseasesCo-inoculationpromotingimprovealleviatesecretingincludingphytohormonesantibioticsThuricin17smallbacteriocinmemberpromotesLumichromesynthesizedsoilfunctionstress-sensingcuesusedmanage/engineerfaceStressfulconditionslikelybecomefrequentsevereclimatechangemanagementinter-organismalagriculture

Similar Articles

Cited By