Markedly Elevated Antibody Responses in Wild versus Captive Spotted Hyenas Show that Environmental and Ecological Factors Are Important Modulators of Immunity.

Andrew S Flies, Linda S Mansfield, Chris K Grant, Mary L Weldele, Kay E Holekamp
Author Information
  1. Andrew S Flies: Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS, Australia; Department of Zoology, Michigan State University, East Lansing, MI, United States of America; Interdisciplinary program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, United States of America; Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.
  2. Linda S Mansfield: Department of Microbiology and Molecular Genetics, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI, United States of America.
  3. Chris K Grant: Custom Monoclonals International Corp, West Sacramento, CA, United States of America.
  4. Mary L Weldele: Department of Psychology, University of California, Berkeley, CA, United States of America.
  5. Kay E Holekamp: Department of Zoology, Michigan State University, East Lansing, MI, United States of America; Interdisciplinary program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, United States of America.

Abstract

Evolutionary processes have shaped the vertebrate immune system over time, but proximal mechanisms control the onset, duration, and intensity of immune responses. Based on testing of the hygiene hypothesis, it is now well known that microbial exposure is important for proper development and regulation of the immune system. However, few studies have examined the differences between wild animals in their natural environments, in which they are typically exposed to a wide array of potential pathogens, and their conspecifics living in captivity. Wild spotted hyenas (Crocuta crocuta) are regularly exposed to myriad pathogens, but there is little evidence of disease-induced mortality in wild hyena populations, suggesting that immune defenses are robust in this species. Here we assessed differences in immune defenses between wild spotted hyenas that inhabit their natural savanna environment and captive hyenas that inhabit a captive environment where pathogen control programs are implemented. Importantly, the captive population of spotted hyenas was derived directly from the wild population and has been in captivity for less than four generations. Our results show that wild hyenas have significantly higher serum antibody concentrations, including total IgG and IgM, natural antibodies, and autoantibodies than do captive hyenas; there was no difference in the bacterial killing capacity of sera collected from captive and wild hyenas. The striking differences in serum antibody concentrations observed here suggest that complementing traditional immunology studies, with comparative studies of wild animals in their natural environment may help to uncover links between environment and immune function, and facilitate progress towards answering immunological questions associated with the hygiene hypothesis.

References

  1. Autoimmun Rev. 2010 Mar;9(5):A259-66 [PMID: 19963079]
  2. J Immunol Methods. 1984 Nov 30;74(2):241-51 [PMID: 6501888]
  3. Proc Biol Sci. 2004 Apr 7;271(1540):715-23 [PMID: 15209105]
  4. Clin Exp Immunol. 1968 Jan;3(1):63-79 [PMID: 4171047]
  5. J Exp Med. 2008 Dec 22;205(13):3053-64 [PMID: 19075288]
  6. J Wildl Dis. 2008 Jan;44(1):45-52 [PMID: 18263820]
  7. Dev Comp Immunol. 2009 Dec;33(12):1247-57 [PMID: 19622371]
  8. Springer Semin Immunopathol. 2005 Mar;26(4):347-62 [PMID: 15633017]
  9. Ann N Y Acad Sci. 1992;662:135-59 [PMID: 1456636]
  10. Parasite Immunol. 2015 May;37(5):267-73 [PMID: 25303494]
  11. Annu Rev Immunol. 1998;16:545-68 [PMID: 9597141]
  12. Appl Environ Microbiol. 2009 Oct;75(20):6462-70 [PMID: 19700552]
  13. Eur J Immunol. 1997 Jun;27(6):1557-63 [PMID: 9209510]
  14. Clin Exp Immunol. 2001 Mar;123(3):361-5 [PMID: 11298120]
  15. Science. 2010 Oct 29;330(6004):662-5 [PMID: 21030656]
  16. J Trop Med Hyg. 1966 May;69(5):99-103 [PMID: 4161313]
  17. BMJ. 1989 Nov 18;299(6710):1259-60 [PMID: 2513902]
  18. PLoS One. 2015;10(4):e0120255 [PMID: 25853852]
  19. Mol Ecol. 2011 Mar;20(5):881-92 [PMID: 21073587]
  20. J Wildl Dis. 2004 Jan;40(1):1-10 [PMID: 15137483]
  21. Clin Exp Immunol. 2014 Jul;177(1):38-46 [PMID: 24749722]
  22. Nat Immunol. 2001 Sep;2(9):777-80 [PMID: 11526384]
  23. Eur J Immunol. 1995 Sep;25(9):2598-604 [PMID: 7589132]
  24. Proc Biol Sci. 2003 Feb 22;270(1513):357-66 [PMID: 12639314]
  25. J Zoo Wildl Med. 2006 Jun;37(2):102-7 [PMID: 17312786]
  26. Integr Comp Biol. 2011 Oct;51(4):563-76 [PMID: 21690107]
  27. Scand J Immunol. 2006 Aug;64(2):125-36 [PMID: 16867157]
  28. Eur J Immunol. 1984 Dec;14(12):1127-30 [PMID: 6083871]
  29. J Infect Dis. 1977 Aug;136(2):196-204 [PMID: 408424]
  30. Science. 2002 Apr 19;296(5567):490-4 [PMID: 11964470]
  31. Mol Ecol. 2011 Dec;20(23):5103-10 [PMID: 21895821]
  32. Nat Immunol. 2010 Sep;11(9):785-97 [PMID: 20720586]
  33. Vet Microbiol. 2004 Aug 19;102(1-2):1-9 [PMID: 15288921]
  34. Immunol Rev. 1989 Aug;110:63-87 [PMID: 2676849]
  35. PLoS One. 2012;7(5):e37406 [PMID: 22616000]
  36. Emerg Infect Dis. 2011 Mar;17(3):387-94 [PMID: 21392428]
  37. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3793-8 [PMID: 24567377]
  38. Nat Immunol. 2004 Oct;5(10):981-6 [PMID: 15454921]
  39. Eur J Immunol. 1989 Dec;19(12):2335-9 [PMID: 2606142]
  40. PLoS One. 2013;8(4):e60726 [PMID: 23589757]
  41. Ecology. 2012 May;93(5):1095-105 [PMID: 22764495]
  42. Vet Res Commun. 2014 Jun;38(2):165-70 [PMID: 24488231]
  43. J Wildl Dis. 2003 Jan;39(1):224-7 [PMID: 12685088]
  44. Horm Behav. 2003 Dec;44(5):385-94 [PMID: 14644632]
  45. Science. 1982 Oct 22;218(4570):384-7 [PMID: 7123238]
  46. Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):110-9 [PMID: 22173276]
  47. Dev Comp Immunol. 2004 Jan;28(1):39-49 [PMID: 12962981]
  48. Trends Ecol Evol. 2005 Dec;20(12):665-9 [PMID: 16701455]
  49. Anim Behav. 2015 May 1;103:237-248 [PMID: 26160980]
  50. Am Nat. 2012 Jul;180(1):70-82 [PMID: 22673652]
  51. Nat Rev Immunol. 2011 Jan;11(1):34-46 [PMID: 21151033]
  52. J Immunol. 1994 Feb 15;152(4):1727-37 [PMID: 8120381]
  53. Dev Comp Immunol. 2014 Nov;47(1):36-51 [PMID: 24984114]
  54. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15026-31 [PMID: 11742089]
  55. Stat Med. 2008 Jul 10;27(15):2865-73 [PMID: 17960576]
  56. Immunol Today. 1991 May;12(5):154-9 [PMID: 1715166]
  57. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5382-7 [PMID: 22421134]

Grants

  1. K26 RR023080/NCRR NIH HHS
  2. R01 GM105042/NIGMS NIH HHS
  3. U19 AI090872/NIAID NIH HHS

MeSH Term

Animals
Animals, Wild
Animals, Zoo
Antibodies
Antibodies, Antinuclear
Antibody Formation
Ecology
Environment
Escherichia coli
Female
Hemocyanins
Hyaenidae
Immunoglobulin G
Immunoglobulin M
Kenya
Male
Proteus mirabilis

Chemicals

Antibodies
Antibodies, Antinuclear
Immunoglobulin G
Immunoglobulin M
Hemocyanins
keyhole-limpet hemocyanin

Word Cloud

Created with Highcharts 10.0.0wildhyenasimmunecaptivenaturalenvironmentstudiesdifferencesspottedsystemcontrolhygienehypothesisanimalsexposedpathogenscaptivityWilddefensesinhabitpopulationserumantibodyconcentrationsEvolutionaryprocessesshapedvertebratetimeproximalmechanismsonsetdurationintensityresponsesBasedtestingnowwellknownmicrobialexposureimportantproperdevelopmentregulationHoweverexaminedenvironmentstypicallywidearraypotentialconspecificslivingCrocutacrocutaregularlymyriadlittleevidencedisease-inducedmortalityhyenapopulationssuggestingrobustspeciesassessedsavannapathogenprogramsimplementedImportantlyderiveddirectlylessfourgenerationsresultsshowsignificantlyhigherincludingtotalIgGIgMantibodiesautoantibodiesdifferencebacterialkillingcapacityseracollectedstrikingobservedsuggestcomplementingtraditionalimmunologycomparativemayhelpuncoverlinksfunctionfacilitateprogresstowardsansweringimmunologicalquestionsassociatedMarkedlyElevatedAntibodyResponsesversusCaptiveSpottedHyenasShowEnvironmentalEcologicalFactorsImportantModulatorsImmunity

Similar Articles

Cited By (10)