Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy.

František Šanda, Václav Perlík, Craig N Lincoln, Jürgen Hauer
Author Information
  1. František Šanda: Faculty of Mathematics and Physics, Institute of Physics, Charles University , Ke Karlovu 5, Prague, 121 16 Czech Republic.
  2. Václav Perlík: Faculty of Mathematics and Physics, Institute of Physics, Charles University , Ke Karlovu 5, Prague, 121 16 Czech Republic.
  3. Craig N Lincoln: Photonics Institute, TU Wien , Gusshausstrasse 27, 1040 Vienna, Austria.
  4. Jürgen Hauer: Photonics Institute, TU Wien , Gusshausstrasse 27, 1040 Vienna, Austria.

Abstract

Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency-frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and affected by underdamped vibrational wavepackets in addition to Stokes shift. All these effects result in non-Gaussian peak profiles. Here, we extend CLS-analysis beyond Gaussian line shapes and test the developed methodology on a solvated molecule, zinc phthalocyanine. We find that CLS facilitates the interpretation of 2D electronic spectra by reducing their complexity to one dimension. In this way, CLS provides a highly sensitive measure of model parameters describing electronic-vibrational and electronic-solvent interaction.

References

  1. J Chem Phys. 2006 Aug 28;125(8):084502 [PMID: 16965024]
  2. J Phys Chem Lett. 2014 Feb 6;5(3):404-407 [PMID: 24527180]
  3. J Phys Chem A. 2007 Dec 20;111(50):12901-13 [PMID: 18004829]
  4. Opt Lett. 1997 Jul 15;22(14):1104-6 [PMID: 18185765]
  5. Chem Rev. 2009 Jun;109(6):2350-408 [PMID: 19432416]
  6. J Phys Chem A. 2013 Oct 3;117(39):9444-53 [PMID: 23421704]
  7. J Chem Phys. 2007 Oct 21;127(15):154107 [PMID: 17949132]
  8. Opt Express. 2009 Oct 12;17(21):18788-93 [PMID: 20372612]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036119 [PMID: 16605610]
  10. Annu Rev Phys Chem. 1998;49:99-123 [PMID: 15012426]
  11. Nature. 2005 Mar 31;434(7033):625-8 [PMID: 15800619]
  12. Opt Lett. 2006 May 1;31(9):1289-91 [PMID: 16642088]
  13. J Chem Phys. 2004 Sep 1;121(9):4221-36 [PMID: 15332970]
  14. Annu Rev Phys Chem. 2003;54:425-63 [PMID: 12626736]
  15. J Chem Phys. 2015 Jun 7;142(21):212434 [PMID: 26049454]
  16. Opt Lett. 2010 Dec 15;35(24):4178-80 [PMID: 21165129]
  17. Rev Sci Instrum. 2015 May;86(5):051301 [PMID: 26026507]
  18. J Phys Chem B. 2006 Jul 20;110(28):13991-4000 [PMID: 16836352]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041132 [PMID: 19905298]
  20. Annu Rev Phys Chem. 2000;51:691-729 [PMID: 11031297]
  21. J Chem Phys. 2006 Jul 7;125(1):014507 [PMID: 16863316]
  22. J Phys Chem B. 2008 Nov 13;112(45):14212-20 [PMID: 18925774]
  23. J Phys Chem A. 2013 Jul 25;117(29):6007-14 [PMID: 23461650]
  24. Phys Rev Lett. 2003 Jan 31;90(4):047401 [PMID: 12570457]
  25. J Phys Chem A. 2015 Jan 8;119(1):95-101 [PMID: 25469716]
  26. Phys Rev Lett. 2007 Feb 23;98(8):080603 [PMID: 17359082]
  27. J Phys Chem B. 2011 May 12;115(18):5431-40 [PMID: 21235275]
  28. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8219-24 [PMID: 10890905]
  29. J Phys Chem Lett. 2012 Jun 7;3(11):1497-502 [PMID: 26285628]
  30. Acc Chem Res. 2009 Sep 15;42(9):1405-11 [PMID: 19391619]
  31. J Chem Phys. 2008 May 28;128(20):204505 [PMID: 18513030]
  32. J Phys Chem B. 2011 May 12;115(18):5383-91 [PMID: 21329370]
  33. J Chem Phys. 2015 May 7;142(17):174202 [PMID: 25956093]
  34. J Chem Phys. 2007 Sep 28;127(12):124503 [PMID: 17902917]
  35. J Phys Chem B. 2009 Dec 24;113(51):16409-19 [PMID: 19954155]
  36. Science. 2005 Aug 26;309(5739):1338-43 [PMID: 16081697]

Word Cloud

Created with Highcharts 10.0.0electronicCLS2DinfraredCenterlinespectroscopyvibrationalmeasurefluctuationsGaussianspectraslopeanalysisextensivelyusedextractfrequency-frequencycorrelationfunctionstransitionsapplyconceptgaptwodomainspossessdifferences:frequencyclassicaloftenslowcontrastsubjectfastspectraldiffusionaffectedunderdampedwavepacketsadditionStokesshifteffectsresultnon-GaussianpeakprofilesextendCLS-analysisbeyondshapestestdevelopedmethodologysolvatedmoleculezincphthalocyaninefindfacilitatesinterpretationreducingcomplexityonedimensionwayprovideshighlysensitivemodelparametersdescribingelectronic-vibrationalelectronic-solventinteractionLineSlopeAnalysisTwo-DimensionalElectronicSpectroscopy

Similar Articles

Cited By