Fungiculture or Termite Husbandry? The Ruminant Hypothesis.

Tânia Nobre, Duur K Aanen
Author Information
  1. Tânia Nobre: Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands. tania.mesquitanobre@wur.nl.
  2. Duur K Aanen: Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands. duur.aanen@wur.nl.

Abstract

We present a new perspective for the role of Termitomyces fungi in the mutualism with fungus-growing termites. According to the predominant view, this mutualism is as an example of agriculture with termites as farmers of a domesticated fungus crop, which is used for degradation of plant-material and production of fungal biomass. However, a detailed study of the literature indicates that the termites might as well be envisioned as domesticates of the fungus. According to the "ruminant hypothesis" proposed here, termite workers, by consuming asexual fruiting bodies not only harvest asexual spores, but also lignocellulolytic enzymes, which they mix with foraged plant material and enzymes of termite and possibly bacterial origin. This mixture is the building material of the fungus garden and facilitates efficient degradation of plant material. The fungus garden thus functions as an external rumen for termites and primarily the fungi themselves benefit from their own, and gut-derived, lignocellulolytic enzymes, using the termites to efficiently mix these with their growth substrate. Only secondarily the termites benefit, when they consume the degraded, nitrogen-enriched plant-fungus mixture a second time. We propose that the details of substrate use, and the degree of complementarity and redundancy among enzymes in food processing, determine selection of horizontally transmitted fungal symbionts at the start of a colony: by testing spores on a specific, mechanically and enzymatically pre-treated growth substrate, the termite host has the opportunity to select specific fungal symbionts. Potentially, the gut-microbiota thus influence host-fungus specificity, and the selection of specific fungal strains at the start of a new colony. We argue that we need to expand the current bipartite insect-biased view of the mutualism of fungus-growing termites and include the possible role of bacteria and the benefit for the fungi to fully understand the division of labor among partners in substrate degradation.

Keywords

References

  1. FEMS Microbiol Ecol. 2001 Mar;35(1):27-36 [PMID: 11248387]
  2. Q Rev Biol. 2001 Jun;76(2):169-97 [PMID: 11409051]
  3. Evolution. 2001 Oct;55(10):2011-27 [PMID: 11761062]
  4. Biosci Biotechnol Biochem. 2002 Jan;66(1):78-84 [PMID: 11866123]
  5. Mol Phylogenet Evol. 2002 Mar;22(3):423-9 [PMID: 11884167]
  6. Bioresour Technol. 2002 May;83(1):1-11 [PMID: 12058826]
  7. Mol Ecol. 2002 Aug;11(8):1565-72 [PMID: 12144675]
  8. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 [PMID: 12386341]
  9. Appl Microbiol Biotechnol. 2003 Mar;61(1):1-9 [PMID: 12658509]
  10. Biosystems. 1992;27(1):39-51 [PMID: 1391690]
  11. Annu Rev Entomol. 1998;43:17-37 [PMID: 15012383]
  12. Curr Biol. 2005 May 10;15(9):851-5 [PMID: 15886104]
  13. Mycol Res. 2005 Mar;109(Pt 3):314-8 [PMID: 15912948]
  14. Annu Rev Microbiol. 2005;59:155-89 [PMID: 16153167]
  15. Mol Ecol. 2006 Feb;15(2):505-16 [PMID: 16448416]
  16. Mol Ecol. 2006 Oct;15(11):3131-8 [PMID: 16968259]
  17. Biol Lett. 2006 Jun 22;2(2):209-12 [PMID: 17148364]
  18. J Basic Microbiol. 2007 Apr;47(2):127-31 [PMID: 17440914]
  19. BMC Evol Biol. 2007 Jul 13;7:115 [PMID: 17629911]
  20. Science. 1978 Mar 31;199(4336):1453-5 [PMID: 17796679]
  21. Int J Med Microbiol. 2009 Jan;299(1):1-8 [PMID: 18640072]
  22. Science. 2008 Oct 3;322(5898):63 [PMID: 18832638]
  23. Biochim Biophys Acta. 1991 Jan 29;1076(2):215-20 [PMID: 1900198]
  24. Proc Biol Sci. 2010 Feb 7;277(1680):359-65 [PMID: 19828546]
  25. Science. 2009 Nov 20;326(5956):1103-6 [PMID: 19965427]
  26. Ecol Lett. 2010 Feb;13(2):223-34 [PMID: 20015249]
  27. Nat Commun. 2010 Nov 02;1:103 [PMID: 21045821]
  28. Appl Environ Microbiol. 2011 Jan;77(1):48-56 [PMID: 21057022]
  29. Cell Mol Life Sci. 2011 Apr;68(8):1297-309 [PMID: 21390549]
  30. Mol Ecol. 2011 May;20(9):2023-33 [PMID: 21410808]
  31. Mol Ecol. 2011 Jun;20(12):2619-27 [PMID: 21481052]
  32. World J Microbiol Biotechnol. 1995 May;11(3):359-60 [PMID: 24414671]
  33. World J Microbiol Biotechnol. 1993 Jan;9(1):108-12 [PMID: 24419852]
  34. J Insect Sci. 2014;14:81 [PMID: 25368037]
  35. Oecologia. 1981 Jan;51(3):371-378 [PMID: 28310022]
  36. Biochim Biophys Acta. 1980 Mar 14;612(1):143-52 [PMID: 7189122]
  37. Clin Infect Dis. 1993 Jun;16 Suppl 4:S160-7 [PMID: 7686781]
  38. Acta Microbiol Immunol Hung. 1994;41(4):391-401 [PMID: 7866723]
  39. Comp Biochem Physiol B Biochem Mol Biol. 1995 Dec;112(4):629-35 [PMID: 8590378]

Word Cloud

Created with Highcharts 10.0.0termitesfungusfungalenzymessubstratefungimutualismfungus-growingdegradationtermitematerialbenefitspecificnewroleTermitomycesAccordingviewasexualsporeslignocellulolyticmixplantmixturegardenthusgrowthamongselectionsymbiontsstartspecificitypresentperspectivepredominantexampleagriculturefarmersdomesticatedcropusedplant-materialproductionbiomassHoweverdetailedstudyliteratureindicatesmightwellenvisioneddomesticates"ruminanthypothesis"proposedworkersconsumingfruitingbodiesharvestalsoforagedpossiblybacterialoriginbuildingfacilitatesefficientfunctionsexternalrumenprimarilygut-derivedusingefficientlysecondarilyconsumedegradednitrogen-enrichedplant-fungussecondtimeproposedetailsusedegreecomplementarityredundancyfoodprocessingdeterminehorizontallytransmittedcolony:testingmechanicallyenzymaticallypre-treatedhostopportunityselectPotentiallygut-microbiotainfluencehost-fungusstrainscolonyargueneedexpandcurrentbipartiteinsect-biasedincludepossiblebacteriafullyunderstanddivisionlaborpartnersFungicultureTermiteHusbandry?RuminantHypothesisMacrotermitinaegutmicrobiotahost-symbiontlignocelluloseruminanthypothesis

Similar Articles

Cited By