Shared Escovopsis parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis.

Lucas A Meirelles, Scott E Solomon, Mauricio Bacci, April M Wright, Ulrich G Mueller, Andre Rodrigues
Author Information
  1. Lucas A Meirelles: Department of Biochemistry and Microbiology , UNESP-São Paulo State University , Rio Claro, São Paulo, Brazil ; Department of Integrative Biology , University of Texas at Austin , Austin, TX, USA.
  2. Scott E Solomon: Department of Biosciences , Rice University , Houston, TX, USA.
  3. Mauricio Bacci: Center for the Study of Social Insects , UNESP-São Paulo State University , Rio Claro, São Paulo, Brazil.
  4. April M Wright: Department of Integrative Biology , University of Texas at Austin , Austin, TX, USA.
  5. Ulrich G Mueller: Department of Biochemistry and Microbiology , UNESP-São Paulo State University , Rio Claro, São Paulo, Brazil.
  6. Andre Rodrigues: Department of Biochemistry and Microbiology , UNESP-São Paulo State University , Rio Claro, São Paulo, Brazil.

Abstract

Fungus-gardening (attine) ants grow fungus for food in protected gardens, which contain beneficial, auxiliary microbes, but also microbes harmful to gardens. Among these potentially pathogenic microorganisms, the most consistently isolated are fungi in the genus Escovopsis, which are thought to co-evolve with ants and their cultivar in a tripartite model. To test clade-to-clade correspondence between Escovopsis and ants in the higher attine symbiosis (including leaf-cutting and non-leaf-cutting ants), we amassed a geographically comprehensive collection of Escovopsis from Mexico to southern Brazil, and reconstructed the corresponding Escovopsis phylogeny. Contrary to previous analyses reporting phylogenetic divergence between Escovopsis from leafcutters and Trachymyrmex ants (non-leafcutter), we found no evidence for such specialization; rather, gardens from leafcutters and non-leafcutters genera can sometimes be infected by closely related strains of Escovopsis, suggesting switches at higher phylogenetic levels than previously reported within the higher attine symbiosis. Analyses identified rare Escovopsis strains that might represent biogeographically restricted endemic species. Phylogenetic patterns correspond to morphological variation of vesicle type (hyphal structures supporting spore-bearing cells), separating Escovopsis with phylogenetically derived cylindrical vesicles from ancestral Escovopsis with globose vesicles. The new phylogenetic insights provide an improved basis for future taxonomic and ecological studies of Escovopsis.

Keywords

References

  1. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7998-8002 [PMID: 10393936]
  2. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  3. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  4. Annu Rev Microbiol. 2001;55:357-80 [PMID: 11544360]
  5. Proc Biol Sci. 2011 Oct 22;278(1721):3050-9 [PMID: 21389026]
  6. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-6 [PMID: 22454494]
  7. Environ Entomol. 2010 Feb;39(1):105-13 [PMID: 20146845]
  8. Antonie Van Leeuwenhoek. 2015 Mar;107(3):731-40 [PMID: 25576160]
  9. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10702-6 [PMID: 16815974]
  10. Mycologia. 2009 Mar-Apr;101(2):206-10 [PMID: 19397193]
  11. PLoS One. 2015 Jan 24;10(1):e0112067 [PMID: 25617836]
  12. Curr Microbiol. 2011 Sep;63(3):250-8 [PMID: 21739253]
  13. FEMS Microbiol Ecol. 2011 Nov;78(2):244-55 [PMID: 21671963]
  14. Proc Biol Sci. 2007 Aug 22;274(1621):1971-8 [PMID: 17550881]
  15. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40 [PMID: 18362345]
  16. Mol Ecol. 2002 Feb;11(2):191-5 [PMID: 11856421]
  17. Mol Ecol. 2007 Jan;16(1):209-16 [PMID: 17181732]
  18. Nat Commun. 2012 May 15;3:840 [PMID: 22588302]
  19. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  20. Curr Biol. 2006 Oct 24;16(20):R866-71 [PMID: 17055966]
  21. PLoS One. 2013 Dec 20;8(12):e82265 [PMID: 24376525]
  22. Microb Ecol. 2008 Nov;56(4):604-14 [PMID: 18369523]
  23. Science. 2003 Jan 17;299(5605):386-8 [PMID: 12532015]
  24. PLoS One. 2013 Nov 15;8(11):e80498 [PMID: 24260403]
  25. J Comput Biol. 2010 Mar;17(3):337-54 [PMID: 20377449]
  26. Nucleic Acids Res. 1992 Nov 25;20(22):6115-6 [PMID: 1461751]
  27. J Evol Biol. 2013 Jun;26(6):1353-62 [PMID: 23639137]
  28. Proc Biol Sci. 2004 Sep 7;271(1550):1791-8 [PMID: 15315894]
  29. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):583-7 [PMID: 23267060]
  30. Trends Ecol Evol. 2007 Sep;22(9):472-80 [PMID: 17509727]
  31. BMC Evol Biol. 2006 Nov 03;6:88 [PMID: 17083733]
  32. Science. 1998 Sep 25;281(5385):2034-8 [PMID: 9748164]
  33. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  34. Q Rev Biol. 2001 Jun;76(2):169-97 [PMID: 11409051]
  35. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  36. PLoS One. 2010 Sep 10;5(9):null [PMID: 20844760]
  37. Am Nat. 2015 May;185(5):693-703 [PMID: 25905511]
  38. Environ Microbiol Rep. 2014 Aug;6(4):339-45 [PMID: 24992532]

Word Cloud

Created with Highcharts 10.0.0Escovopsisantsattinehighergardenssymbiosisphylogeneticmicrobesleaf-cuttingnon-leaf-cuttingphylogenyleafcuttersstrainsvesiclesancestralFungus-gardeninggrowfungusfoodprotectedcontainbeneficialauxiliaryalsoharmfulAmongpotentiallypathogenicmicroorganismsconsistentlyisolatedfungigenusthoughtco-evolvecultivartripartitemodeltestclade-to-cladecorrespondenceincludingamassedgeographicallycomprehensivecollectionMexicosouthernBrazilreconstructedcorrespondingContrarypreviousanalysesreportingdivergenceTrachymyrmexnon-leafcutterfoundevidencespecializationrathernon-leafcuttersgeneracansometimesinfectedcloselyrelatedsuggestingswitcheslevelspreviouslyreportedwithinAnalysesidentifiedraremightrepresentbiogeographicallyrestrictedendemicspeciesPhylogeneticpatternscorrespondmorphologicalvariationvesicletypehyphalstructuressupportingspore-bearingcellsseparatingphylogeneticallyderivedcylindricalglobosenewinsightsprovideimprovedbasisfuturetaxonomicecologicalstudiesSharedparasitesfungus-growingantstatereconstructionhost–parasiteinteractions

Similar Articles

Cited By