Defining the nitrogen regulated transcriptome of Mycobacterium smegmatis using continuous culture.

Michael Petridis, Andrej Benjak, Gregory M Cook
Author Information
  1. Michael Petridis: Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand. petmi719@student.otago.ac.nz.
  2. Andrej Benjak: Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland. andrej.benjak@epfl.ch.
  3. Gregory M Cook: Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand. greg.cook@otago.ac.nz.

Abstract

BACKGROUND: Nitrogen is essential for microbial growth and its importance is demonstrated by the complex regulatory systems used to control the transport, assimilation and metabolism of nitrogen. Recent studies are beginning to shed light on how mycobacteria respond to nitrogen limitation and several regulators (e.g., GlnR, PII) have been characterized at a molecular level. However, despite this progress, our knowledge of the transcriptional response of mycobacteria to nitrogen limitation and its regulation is confined to batch culture.
METHODS: To gain further insight into the response of mycobacteria to nitrogen limitation, we developed a nitrogen-limited chemostat. We compared the transcriptional response of nitrogen-limited cells to carbon-limited cells using RNA-seq analysis in a continuous culture model at a constant growth rate.
CONCLUSIONS: Our findings revealed significant changes in the expression of 357 genes (208 upregulated, 149 downregulated; >2-fold change, false discovery rate <5 %) in response to nitrogen limitation in continuous culture. The vast majority of the GlnR regulon (68 %) was differentially expressed under nitrogen limitation in continuous culture and approximately 52 % of the 357 genes overlapped with a previously published study investigating the response of M. smegmatis to nitrogen limitation in batch culture, while expression of only 17 % of the genes identified in batch culture were affected in our chemostat model. Moreover, we identified a unique set of 45 genes involved in the uptake and metabolism of nitrogen that were exclusive to our chemostat model. We observed strong downregulation of pathways for amino acid catabolism (i.e., alanine, aspartate, valine, proline and lysine), suggesting preservation of these amino acids for critical cellular function. We found 16 novel transcriptional regulators that were directly or indirectly involved in the global transcriptomic response of M. smegmatis to nitrogen limitation and identified several non-coding RNAs that might be involved in the transcriptional or post-transcriptional regulation of nitrogen-regulated gene expression.
RESULTS: Using nitrogen-limited continuous culture we identified the nitrogen-responsive transcriptome of M. smegmatis, including a number of small non-coding RNAs implicated in controlling nitrogen-regulated gene expression.

References

Nat Chem Biol. 2013 Nov;9(11):674-6 [PMID: 24077180]
BMC Genomics. 2008;9:488 [PMID: 18925949]
Microbiol Mol Biol Rev. 2001 Mar;65(1):80-105 [PMID: 11238986]
BMC Genomics. 2013;14:301 [PMID: 23642041]
Biol Cell. 2009 Feb;101(2):117-31 [PMID: 19076068]
Annu Rev Microbiol. 2003;57:155-76 [PMID: 12730324]
Curr Opin Microbiol. 2005 Apr;8(2):168-73 [PMID: 15802248]
Genome Biol. 2010;11(10):R106 [PMID: 20979621]
J Biotechnol. 2005 Oct 10;119(4):357-67 [PMID: 15935503]
J Biol Chem. 2011 Mar 25;286(12):10681-9 [PMID: 21216950]
J Bacteriol. 2001 Jun;183(11):3293-302 [PMID: 11344136]
Biochemistry. 1998 Sep 15;37(37):12782-94 [PMID: 9737855]
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5114-9 [PMID: 16540542]
Microbiol Rev. 1989 Mar;53(1):121-47 [PMID: 2651863]
Infect Immun. 2000 Feb;68(2):429-36 [PMID: 10639400]
PLoS Pathog. 2014 Feb;10(2):e1003928 [PMID: 24586151]
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14674-9 [PMID: 11121068]
Mol Microbiol. 2002 Oct;46(2):331-47 [PMID: 12406212]
Annu Rev Microbiol. 2007;61:349-77 [PMID: 17506680]
J Mol Microbiol Biotechnol. 2009;17(1):20-9 [PMID: 18824837]
Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71 [PMID: 24225315]
Mol Microbiol. 2008 Feb;67(4):861-80 [PMID: 18179599]
Nat Rev Microbiol. 2014 Nov;12(11):729-37 [PMID: 25244084]
Proc Natl Acad Sci U S A. 1988 Jul;85(14):4976-80 [PMID: 2839825]
FEMS Microbiol Rev. 2003 Dec;27(5):617-28 [PMID: 14638415]
PLoS One. 2010;5(1):e8614 [PMID: 20062806]
Nucleic Acids Res. 2015 Jan;43(Database issue):D6-17 [PMID: 25398906]
Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
Mol Microbiol. 2005 Oct;58(2):580-95 [PMID: 16194241]
Nature. 1962 Dec 8;196:987-8 [PMID: 13946593]
EMBO J. 2014 Aug 18;33(16):1802-14 [PMID: 24986881]
Chem Biol. 2012 Feb 24;19(2):218-27 [PMID: 22365605]
J Mol Evol. 2009 Apr;68(4):322-36 [PMID: 19296042]
Bacteriol Rev. 1976 Jun;40(2):403-68 [PMID: 786256]
Mol Microbiol. 2015 Sep;97(6):1142-57 [PMID: 26077160]
Arch Biochem Biophys. 1978 Dec;191(2):602-12 [PMID: 33597]
Appl Environ Microbiol. 1999 Apr;65(4):1530-9 [PMID: 10103247]
Biology (Basel). 2012 Dec 14;1(3):895-905 [PMID: 24832523]
Microbiol Rev. 1995 Dec;59(4):604-22 [PMID: 8531888]
Mol Microbiol. 2012 May;84(4):664-81 [PMID: 22507203]
FEBS Lett. 1999 Dec 17;463(3):216-20 [PMID: 10606724]
BMC Genomics. 2013;14:436 [PMID: 23819599]
Tuberculosis (Edinb). 2013 Mar;93(2):198-206 [PMID: 23352854]
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 [PMID: 25348405]
Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 [PMID: 24214961]

MeSH Term

Aspartic Acid
Bacterial Proteins
Cell Culture Techniques
Gene Expression Regulation, Bacterial
Mycobacterium smegmatis
Nitrogen
RNA, Small Untranslated
Transcriptome

Chemicals

Bacterial Proteins
RNA, Small Untranslated
Aspartic Acid
Nitrogen

Word Cloud

Similar Articles

Cited By