Disparate developmental patterns of immune responses to bacterial and viral infections in fish.

Rosario Castro, Luc Jouneau, Luca Tacchi, Daniel J Macqueen, Abdullah Alzaid, Christopher J Secombes, Samuel A M Martin, Pierre Boudinot
Author Information
  1. Rosario Castro: Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France.
  2. Luc Jouneau: Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France.
  3. Luca Tacchi: Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom, AB24 2TZ.
  4. Daniel J Macqueen: Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom, AB24 2TZ.
  5. Abdullah Alzaid: Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom, AB24 2TZ.
  6. Christopher J Secombes: Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom, AB24 2TZ.
  7. Samuel A M Martin: Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom, AB24 2TZ.
  8. Pierre Boudinot: Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France.

Abstract

During early stages of development vertebrates rely on an immature immune system to fight pathogens, but in non mammalian species few studies have taken an in-depth analysis of the transition from reliance on innate immune mechanisms to the appearance of adaptive immunity. Using rainbow trout as a model we characterized responses to two natural pathogens of this species, the Gram negative bacterium Aeromonas salmonicida and the virus VHSV, using microarray analysis at four early life history stages; eyed egg, post hatch, first feeding and three weeks post first feeding when adaptive immunity starts to be effective. All stages responded to both infections, but the complexity of the response increased with developmental stage. The response to virus showed a clear interferon response only from first feeding. In contrast, bacterial infection induced a marked response from early stages, with modulation of inflammatory, antimicrobial peptide and complement genes across all developmental stages. Whilst the viral and bacterial responses were distinct, there were modulated genes in common, mainly of general inflammatory molecules. This work provides a first platform to explore the development of fish immunity to infection, and to compare the age-dependent changes (from embryo to adults) across vertebrates.

References

  1. Fish Shellfish Immunol. 2005 Nov;19(5):429-39 [PMID: 15916905]
  2. Biol Reprod. 1999 Apr;60(4):783-9 [PMID: 10084949]
  3. Immunogenetics. 2006 Apr;58(2-3):168-79 [PMID: 16550351]
  4. Fish Shellfish Immunol. 2007 May;22(5):510-9 [PMID: 17085058]
  5. Semin Immunol. 2007 Feb;19(1):24-32 [PMID: 17275323]
  6. Fish Shellfish Immunol. 2007 Sep;23(3):542-52 [PMID: 17449276]
  7. J Biol Chem. 2007 Nov 30;282(48):34605-10 [PMID: 17884812]
  8. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  9. J Immunol. 2009 May 1;182(9):5641-53 [PMID: 19380811]
  10. Nat Cell Biol. 2009 May;11(5):521-6 [PMID: 19404331]
  11. BMC Evol Biol. 2009;9:85 [PMID: 19400936]
  12. Fish Shellfish Immunol. 2009 Aug;27(2):89-99 [PMID: 19442742]
  13. J Virol. 2009 Aug;83(16):7815-27 [PMID: 19474100]
  14. Dev Comp Immunol. 2009 Nov;33(11):1196-204 [PMID: 19576240]
  15. Mol Immunol. 2009 Sep;46(15):2918-30 [PMID: 19631987]
  16. J Virol. 2011 Jan;85(2):1048-57 [PMID: 21084489]
  17. PLoS Pathog. 2011;7(2):e1001269 [PMID: 21304884]
  18. Fish Shellfish Immunol. 2011 Nov;31(5):716-24 [PMID: 20816807]
  19. PLoS Pathog. 2012;8(7):e1002815 [PMID: 22911651]
  20. Immunity. 2012 Nov 16;37(5):771-83 [PMID: 23159225]
  21. Dev Comp Immunol. 2013 Jan-Feb;39(1-2):72-8 [PMID: 22387589]
  22. BMC Genomics. 2013;14:255 [PMID: 23586901]
  23. Trends Microbiol. 2013 Aug;21(8):413-20 [PMID: 23726320]
  24. J Mol Biol. 2013 Dec 13;425(24):4904-20 [PMID: 24075867]
  25. Cell Microbiol. 2014 Jan;16(1):39-49 [PMID: 24188444]
  26. J Immunol. 2014 May 1;192(9):4328-41 [PMID: 24683187]
  27. Trends Microbiol. 2014 Sep;22(9):490-7 [PMID: 24865811]
  28. Mol Immunol. 2006 Apr;43(11):1900-11 [PMID: 16313960]
  29. Nat Rev Immunol. 2001 Nov;1(2):135-45 [PMID: 11905821]
  30. Int Rev Cytol. 1992;136:51-92 [PMID: 1506146]

MeSH Term

Adaptive Immunity
Aeromonas salmonicida
Animals
Embryo, Nonmammalian
Gene Expression Profiling
Gene Expression Regulation, Developmental
Immunity, Innate
Oncorhynchus mykiss
Protein Biosynthesis

Word Cloud

Created with Highcharts 10.0.0stagesfirstresponseearlyimmuneimmunityresponsesfeedingdevelopmentalbacterialdevelopmentvertebratespathogensspeciesanalysisadaptiveviruspostinfectionsinfectioninflammatorygenesacrossviralfishrelyimmaturesystemfightnonmammalianstudiestakenin-depthtransitionrelianceinnatemechanismsappearanceUsingrainbowtroutmodelcharacterizedtwonaturalGramnegativebacteriumAeromonassalmonicidaVHSVusingmicroarrayfourlifehistoryeyedegghatchthreeweeksstartseffectiverespondedcomplexityincreasedstageshowedclearinterferoncontrastinducedmarkedmodulationantimicrobialpeptidecomplementWhilstdistinctmodulatedcommonmainlygeneralmoleculesworkprovidesplatformexplorecompareage-dependentchangesembryoadultsDisparatepatterns

Similar Articles

Cited By