Olfactory Transcriptional Analysis of Salmon Exposed to Mixtures of Chlorpyrifos and Malathion Reveal Novel Molecular Pathways of Neurobehavioral Injury.

Lu Wang, Herbert M Espinoza, James W MacDonald, Theo K Bammler, Chase R Williams, Andrew Yeh, Ke'ale W Louie, David J Marcinek, Evan P Gallagher
Author Information
  1. Lu Wang: *Department of Environmental and Occupational Health Sciences and.
  2. Herbert M Espinoza: *Department of Environmental and Occupational Health Sciences and.
  3. James W MacDonald: *Department of Environmental and Occupational Health Sciences and.
  4. Theo K Bammler: *Department of Environmental and Occupational Health Sciences and.
  5. Chase R Williams: *Department of Environmental and Occupational Health Sciences and.
  6. Andrew Yeh: *Department of Environmental and Occupational Health Sciences and.
  7. Ke'ale W Louie: *Department of Environmental and Occupational Health Sciences and.
  8. David J Marcinek: Department of Radiology, University of Washington, Seattle, Washington.
  9. Evan P Gallagher: *Department of Environmental and Occupational Health Sciences and evang3@uw.edu.

Abstract

Pacific Salmon exposed to sublethal concentrations of organophosphate pesticides (OP) have impaired olfactory function that can lead to loss of behaviors that are essential for survival. These exposures often involve mixtures and can occur at levels below those which inhibit acetylcholinesterase (AChE). In this study, juvenile Coho Salmon were exposed for 24 h to either 0.1, 0.5, or 2.5 ppb chlorpyrifos (CPF), 2, 10, or 50 ppb Malathion (MAL), or binary mixtures of 0.1 CPF:2 ppb MAL, 0.5 CPF:10 ppb MAL, or 2.5 CPF:10 ppb MAL to mimic single and binary environmental exposures. Microarray analysis of olfactory rosettes from pesticide-exposed Salmon revealed differentially expressed genes involved in nervous system function and signaling, aryl hydrocarbon receptor signaling, xenobiotic metabolism, and mitochondrial dysfunction. Coho exposed to OP mixtures exhibited a more pronounced loss in detection of a predatory olfactory cue relative to those exposed to single compounds, whereas respirometry experiments demonstrated that exposure to OPs, individually and in mixtures, reduced maximum respiratory capacity of olfactory rosette mitochondria. The observed molecular, biochemical, and behavioral effects occurred largely in the absence of effects on brain AChE. In summary, our results provide new insights associated with the sublethal neurotoxic effects of OP mixtures relevant to environmental exposures involving molecular and cellular pathways of injury to the Salmon olfactory system that underlie Neurobehavioral Injury.

Keywords

References

  1. Environ Sci Technol. 2008 Jul 1;42(13):4996-5001 [PMID: 18678039]
  2. Environ Health Perspect. 2009 Mar;117(3):348-53 [PMID: 19337507]
  3. Aquat Toxicol. 2004 Aug 10;69(2):133-48 [PMID: 15261450]
  4. Ecol Appl. 2012 Jul;22(5):1460-71 [PMID: 22908706]
  5. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):144-55 [PMID: 20691718]
  6. Toxicol Appl Pharmacol. 1997 Jul;145(1):158-74 [PMID: 9221834]
  7. Hum Exp Toxicol. 2011 Aug;30(8):1062-72 [PMID: 20965953]
  8. Neurotoxicology. 2007 Nov;28(6):1208-19 [PMID: 17850875]
  9. Toxicol Appl Pharmacol. 2012 Sep 1;263(2):148-62 [PMID: 22714038]
  10. Farmaco Sci. 1977 Feb;32(2):116-22 [PMID: 858381]
  11. Nature. 1987 Jan 29-Feb 4;325(6103):442-4 [PMID: 3027574]
  12. Int J Oncol. 2003 Sep;23(3):697-704 [PMID: 12888906]
  13. J Signal Transduct. 2012;2012:329635 [PMID: 22175013]
  14. Fundam Appl Toxicol. 1991 Jan;16(1):110-6 [PMID: 2019336]
  15. Biochem J. 2011 Apr 15;435(2):297-312 [PMID: 21726199]
  16. Brain Res. 2000 Feb 28;857(1-2):87-98 [PMID: 10700556]
  17. Environ Toxicol Chem. 2001 Jan;20(1):37-45 [PMID: 11351414]
  18. Chemosphere. 2014 Jun;104:244-50 [PMID: 24530164]
  19. Aquat Toxicol. 2012 Apr;110-111:37-44 [PMID: 22257444]
  20. Environ Toxicol Chem. 2006 May;25(5):1200-7 [PMID: 16704049]
  21. J Appl Toxicol. 1991 Dec;11(6):391-5 [PMID: 1761796]
  22. Aquat Toxicol. 2011 Apr;102(3-4):205-15 [PMID: 21356183]
  23. Toxicol Appl Pharmacol. 2002 Jul 15;182(2):176-85 [PMID: 12140181]
  24. Free Radic Biol Med. 2011 Oct 1;51(7):1289-301 [PMID: 21777669]
  25. J Exp Biol. 2008 Aug;211(Pt 15):2417-22 [PMID: 18626075]
  26. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  27. Free Radic Biol Med. 2005 Jan 1;38(1):12-23 [PMID: 15589367]
  28. Development. 2000 Jun;127(11):2323-32 [PMID: 10804175]
  29. Environ Sci Technol. 2008 Feb 15;42(4):1352-8 [PMID: 18351116]
  30. Toxicol In Vitro. 2015 Jun;29(4):672-80 [PMID: 25659769]
  31. Environ Sci Technol. 2007 May 15;41(10):3408-14 [PMID: 17547156]
  32. Toxicology. 2009 May 2;259(1-2):1-9 [PMID: 19167454]
  33. Toxicol Sci. 1998 Jan;41(1):8-20 [PMID: 9520337]
  34. Integr Environ Assess Manag. 2013 Jan;9(1):70-8 [PMID: 22736415]
  35. Aquat Toxicol. 2015 Apr;161:94-101 [PMID: 25697678]
  36. Physiol Rev. 1998 Apr;78(2):429-66 [PMID: 9562035]
  37. Toxicol Appl Pharmacol. 2013 Jul 1;270(1):39-44 [PMID: 23578477]
  38. J Neurosci. 2002 Jun 15;22(12):4964-72 [PMID: 12077193]
  39. PLoS One. 2011;6(11):e26963 [PMID: 22132085]
  40. Environ Sci Technol. 2013 Mar 19;47(6):2925-31 [PMID: 23409965]
  41. Environ Toxicol Chem. 2005 Jan;24(1):136-45 [PMID: 15683177]
  42. Environ Toxicol Chem. 2006 Oct;25(10):2809-17 [PMID: 17022425]
  43. Bioinformatics. 2002;18 Suppl 1:S96-104 [PMID: 12169536]
  44. J Neurobiol. 1996 May;30(1):37-48 [PMID: 8727981]
  45. PLoS One. 2012;7(5):e36213 [PMID: 22567140]
  46. Biochem Pharmacol. 1961 Jul;7:88-95 [PMID: 13726518]
  47. Aquat Toxicol. 2010 Jan 21;96(1):2-26 [PMID: 19931199]

Grants

  1. P42-ES004696/NIEHS NIH HHS
  2. P42 ES004696/NIEHS NIH HHS
  3. P30ES07033/NIEHS NIH HHS
  4. T32 ES007032/NIEHS NIH HHS
  5. P30 ES007033/NIEHS NIH HHS
  6. T32 DE007057/NIDCR NIH HHS

MeSH Term

Animals
Behavior, Animal
Brain
Chlorpyrifos
Cholinesterase Inhibitors
Dose-Response Relationship, Drug
Insecticides
Malathion
Mitochondria
Oncorhynchus kisutch
Smell
Water Pollutants, Chemical

Chemicals

Cholinesterase Inhibitors
Insecticides
Water Pollutants, Chemical
Chlorpyrifos
Malathion

Word Cloud

Created with Highcharts 10.0.0salmonolfactorymixturesexposed0MALOPexposures52effectssublethalfunctioncanlossAChECoho1chlorpyrifosmalathionbinaryCPF:10 ppbsingleenvironmentalanalysissystemsignalingmitochondriamolecularinjuryPacificconcentrationsorganophosphatepesticidesimpairedleadbehaviorsessentialsurvivalofteninvolveoccurlevelsinhibitacetylcholinesterasestudyjuvenile24 heither5 ppbCPF1050 ppbCPF:2 ppbmimicMicroarrayrosettespesticide-exposedrevealeddifferentiallyexpressedgenesinvolvednervousarylhydrocarbonreceptorxenobioticmetabolismmitochondrialdysfunctionexhibitedpronounceddetectionpredatorycuerelativecompoundswhereasrespirometryexperimentsdemonstratedexposureOPsindividuallyreducedmaximumrespiratorycapacityrosetteobservedbiochemicalbehavioraloccurredlargelyabsencebrainsummaryresultsprovidenewinsightsassociatedneurotoxicrelevantinvolvingcellularpathwaysunderlieneurobehavioralOlfactoryTranscriptionalAnalysisSalmonExposedMixturesChlorpyrifosMalathionRevealNovelMolecularPathwaysNeurobehavioralInjurymicroarrayolfaction

Similar Articles

Cited By (5)