KIR Genes and Patterns Given by the A Priori Algorithm: Immunity for Haematological Malignancies.

J Gilberto Rodríguez-Escobedo, Christian A García-Sepúlveda, Juan C Cuevas-Tello
Author Information
  1. J Gilberto Rodríguez-Escobedo: Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava No. 8, Zona Universitaria, 78290 San Luis Potosí, ZC, Mexico.
  2. Christian A García-Sepúlveda: Laboratorio de Genómica Viral y Humana, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Venustiano Carranza No. 2405, Colonia Filtros las Lomas, 78210 San Luis Potosí, CP, Mexico.
  3. Juan C Cuevas-Tello: Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava No. 8, Zona Universitaria, 78290 San Luis Potosí, ZC, Mexico.

Abstract

Killer-cell immunoglobulin-like receptors (KIRs) are membrane proteins expressed by cells of innate and adaptive immunity. The KIR system consists of 17 genes and 614 alleles arranged into different haplotypes. KIR genes modulate susceptibility to haematological malignancies, viral infections, and autoimmune diseases. Molecular epidemiology studies rely on traditional statistical methods to identify associations between KIR genes and disease. We have previously described our results by applying support vector machines to identify associations between KIR genes and disease. However, rules specifying which haplotypes are associated with greater susceptibility to malignancies are lacking. Here we present the results of our investigation into the rules governing haematological malignancy susceptibility. We have studied the different haplotypic combinations of 17 KIR genes in 300 healthy individuals and 43 patients with haematological malignancies (25 with leukaemia and 18 with lymphomas). We compare two machine learning algorithms against traditional statistical analysis and show that the "a priori" algorithm is capable of discovering patterns unrevealed by previous algorithms and statistical approaches.

References

  1. J Exp Med. 2000 Feb 21;191(4):661-8 [PMID: 10684858]
  2. Immunity. 2001 Sep;15(3):363-74 [PMID: 11567627]
  3. Hum Immunol. 2002 Mar;63(3):164-75 [PMID: 11872234]
  4. Int Rev Immunol. 2001 Jun;20(3-4):439-501 [PMID: 11878512]
  5. Science. 2002 Mar 15;295(5562):2097-100 [PMID: 11896281]
  6. Hum Immunol. 2002 Apr;63(4):271-80 [PMID: 12039408]
  7. Blood. 2002 Nov 15;100(10):3825-7 [PMID: 12393440]
  8. Immunol Rev. 2002 Dec;190:40-52 [PMID: 12493005]
  9. Blood. 2003 Aug 1;102(3):814-9 [PMID: 12689936]
  10. Br J Haematol. 2004 May;125(3):267-81 [PMID: 15086409]
  11. Trends Immunol. 2004 Jun;25(6):328-33 [PMID: 15145323]
  12. Int J Cancer. 1975 Aug 15;16(2):230-9 [PMID: 1080480]
  13. Eur J Immunol. 1975 Feb;5(2):112-7 [PMID: 1234049]
  14. Eur J Immunol. 1975 Feb;5(2):117-21 [PMID: 1086218]
  15. J Exp Med. 1990 Dec 1;172(6):1589-98 [PMID: 2147946]
  16. J Exp Med. 1993 Oct 1;178(4):1321-36 [PMID: 8376937]
  17. Blood. 1999 Jul 1;94(1):333-9 [PMID: 10381530]
  18. Biol Blood Marrow Transplant. 2006 Aug;12(8):828-36 [PMID: 16864053]
  19. PLoS One. 2007;2(5):e406 [PMID: 17476328]
  20. Mol Med. 2007 Sep-Oct;13(9-10):527-41 [PMID: 17660860]
  21. Blood. 2009 Jan 15;113(3):726-32 [PMID: 18945962]
  22. Nucleic Acids Res. 2010 Jan;38(Database issue):D863-9 [PMID: 19875415]
  23. Mol Biol Rep. 2010 Apr;37(4):1883-90 [PMID: 19609718]
  24. Biol Blood Marrow Transplant. 2010 Apr;16(4):533-42 [PMID: 19961944]
  25. Iran J Immunol. 2010 Mar;7(1):8-17 [PMID: 20371915]
  26. Biol Blood Marrow Transplant. 2010 Sep;16(9):1257-64 [PMID: 20302958]
  27. Bone Marrow Transplant. 2010 Oct;45(10):1514-21 [PMID: 20173784]
  28. PLoS One. 2010;5(12):e15115 [PMID: 21206914]
  29. Tissue Antigens. 2011 Aug;78(2):129-38 [PMID: 21726204]
  30. Immunogenetics. 2011 Sep;63(9):561-75 [PMID: 21638211]
  31. Biotechnol J. 2012 Aug;7(8):938-9 [PMID: 22887882]
  32. Immunogenetics. 2012 Oct;64(10):719-37 [PMID: 22752190]
  33. Comput Biol Med. 2013 Dec;43(12):2053-62 [PMID: 24290921]
  34. Hum Genet. 2014 Feb;133(2):125-38 [PMID: 24122152]
  35. Nature. 2014 Jul 31;511(7511):524-6 [PMID: 25079538]
  36. Neural Netw. 2015 Jan;61:85-117 [PMID: 25462637]
  37. Int J Immunogenet. 2015 Aug;42(4):229-38 [PMID: 26010044]
  38. Tissue Antigens. 2015 Aug;86(2):98-113 [PMID: 26189878]

MeSH Term

Adult
Algorithms
Case-Control Studies
Female
Genetic Predisposition to Disease
Haplotypes
Hematologic Neoplasms
Humans
Machine Learning
Male
Mathematical Computing
Models, Genetic
Multivariate Analysis
Receptors, KIR
Systems Biology
Young Adult

Chemicals

Receptors, KIR