Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment.

Saria Otani, Lars H Hansen, S��ren J S��rensen, Michael Poulsen
Author Information
  1. Saria Otani: Department of Biology, Section for Ecology and Evolution, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 2100, Copenhagen East, Denmark. Saria.Otani@bio.ku.dk. ORCID
  2. Lars H Hansen: Department of Biology, Section for Microbiology, University of Copenhagen, Copenhagen, Denmark. lhha@dmu.dk.
  3. S��ren J S��rensen: Department of Biology, Section for Microbiology, University of Copenhagen, Copenhagen, Denmark. SJS@bio.ku.dk.
  4. Michael Poulsen: Department of Biology, Section for Ecology and Evolution, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 2100, Copenhagen East, Denmark. MPoulsen@bio.ku.dk.

Abstract

Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from gut deposits and also that environment affects which gut bacteria dominate comb communities at a given point in time.

Keywords

References

  1. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  2. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  3. Mol Ecol. 2006 Feb;15(2):505-16 [PMID: 16448416]
  4. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  5. Syst Appl Microbiol. 2015 Oct;38(7):472-82 [PMID: 26283320]
  6. Microb Ecol. 2012 May;63(4):975-85 [PMID: 22173371]
  7. Biosci Biotechnol Biochem. 2007 Apr;71(4):906-15 [PMID: 17420599]
  8. Curr Biol. 2005 May 10;15(9):851-5 [PMID: 15886104]
  9. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  10. Environ Microbiol. 2016 May;18(5):1440-51 [PMID: 26346907]
  11. Comput Appl Biosci. 1996 Aug;12(4):357-8 [PMID: 8902363]
  12. Biosci Biotechnol Biochem. 2010;74(6):1145-51 [PMID: 20530908]
  13. Appl Environ Microbiol. 2005 Dec;71(12):7696-704 [PMID: 16332742]
  14. Springerplus. 2015 Sep 02;4:471 [PMID: 26355944]
  15. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 [PMID: 12386341]
  16. Diabetologia. 2012 Aug;55(8):2285-94 [PMID: 22572803]
  17. Infect Immun. 2015 Mar;83(3):934-41 [PMID: 25534943]
  18. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  19. Mol Phylogenet Evol. 2011 Dec;61(3):964-9 [PMID: 21896335]
  20. Mol Ecol. 2015 Oct;24(20):5284-95 [PMID: 26348261]
  21. Mol Phylogenet Evol. 1992 Mar;1(1):41-52 [PMID: 1342923]
  22. Oecologia. 1981 Jan;51(3):379-384 [PMID: 28310023]
  23. Biosci Biotechnol Biochem. 2007 May;71(5):1244-51 [PMID: 17485852]
  24. Oecologia. 1976 Jun;22(2):153-178 [PMID: 28308653]
  25. Antonie Van Leeuwenhoek. 2013 Nov;104(5):869-83 [PMID: 23942613]
  26. PLoS One. 2013 Jul 17;8(7):e69184 [PMID: 23874908]
  27. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  28. Cell Mol Life Sci. 2011 Apr;68(8):1311-25 [PMID: 21365277]
  29. Microb Ecol. 2013 Apr;65(3):531-6 [PMID: 23529653]
  30. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]

MeSH Term

Animals
Bacteria
Environment
Fungi
Gastrointestinal Microbiome
Isoptera
Phylogeny
Termitomyces

Word Cloud

Created with Highcharts 10.0.0combgutfungustermitebacteriacommunitiesTermitomycesbacterial33duetermitesMacrotermitinaeplantasexualsporesgutswithinalsodepositedsequencing16SrRNAcommunitycompositionsfour20112013microbiotastaxaconsistenttimecombscontributionsdepositsenvironmentFungus-growingsubfamilymixforageplant-degradingfungalsymbiontdepositblendstructuresmatterdegradedgrowsproducesnodulesfeedSincematerialpassesinevitableremainedunknownwhetherdistinctsustainedUsinghigh-throughputgeneexploredsamplesspeciesthreegeneracollectedSouthAfricangeographiclocationsidentifiedphylaFirmicutesBacteroidetesProteobacteriaActinobacteriaCandidatedivisionTM7jointlyaccounting92 %readsAnalyses25coloniesshoweddominantoriginateshiftedshiftsappearchangespresentratherdifferencesrelativeabundancesprimarilygut-derivedindicateslargelyspecies-specificmajoraffectsdominategivenpointBacterialcomprisedMicrobiotaSymbiosis

Similar Articles

Cited By (29)