A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons.

Hwanhee Hong, Haitao Chu, Jing Zhang, Bradley P Carlin
Author Information
  1. Hwanhee Hong: Department of Mental Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
  2. Haitao Chu: Division of Biostatistics, University of Minnesota, Minneapolis, MN, 55405, USA.
  3. Jing Zhang: Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD, 20742, USA.
  4. Bradley P Carlin: Division of Biostatistics, University of Minnesota, Minneapolis, MN, 55405, USA.

Abstract

Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two treatments), and researchers often choose study arms based upon which treatments emerge as superior in previous trials. In this paper, we summarize existing hierarchical Bayesian methods for MTCs with a single outcome and introduce novel Bayesian approaches for multiple outcomes simultaneously, rather than in separate MTC analyses. We do this by incorporating partially observed data and its correlation structure between outcomes through contrast-based and arm-based parameterizations that consider any unobserved treatment arms as missing data to be imputed. We also extend the model to apply to all types of generalized linear model outcomes, such as count or continuous responses. We offer a simulation study under various missingness mechanisms (e.g., missing completely at random, missing at random, and missing not at random) providing evidence that our models outperform existing models in terms of bias, mean squared error, and coverage probability then illustrate our methods with a real MTC dataset. We close with a discussion of our results, several contentious issues in MTC analysis, and a few avenues for future methodological development.

Keywords

References

  1. Stat Med. 2010 Mar 30;29(7-8):932-44 [PMID: 20213715]
  2. Res Synth Methods. 2014 Jun;5(2):162-85 [PMID: 26052655]
  3. Stat Med. 2005 Aug 15;24(15):2401-28 [PMID: 16015676]
  4. BMC Med. 2013;11:159 [PMID: 23826681]
  5. Stat Med. 2002 Aug 30;21(16):2313-24 [PMID: 12210616]
  6. Stat Med. 2009 Nov 10;28(25):3049-67 [PMID: 19630097]
  7. Biometrics. 2012 Dec;68(4):1269-77 [PMID: 22845838]
  8. J Clin Epidemiol. 2012 Aug;65(8):835-45 [PMID: 22726765]
  9. BMJ. 2005 Oct 15;331(7521):897-900 [PMID: 16223826]
  10. Med Decis Making. 2013 Jul;33(5):702-14 [PMID: 23549384]
  11. Biostatistics. 2009 Oct;10(4):792-805 [PMID: 19687150]
  12. Control Clin Trials. 1986 Sep;7(3):177-88 [PMID: 3802833]
  13. Stat Med. 2008 Nov 29;27(27):5620-39 [PMID: 18680174]
  14. Stat Med. 1999 Jan 15;18(1):110-5 [PMID: 9990698]
  15. Res Synth Methods. 2011 Mar;2(1):43-60 [PMID: 26061599]
  16. Stat Med. 2007 Mar 15;26(6):1237-54 [PMID: 16900557]
  17. Value Health. 2008 Sep-Oct;11(5):956-64 [PMID: 18489499]
  18. Stat Med. 2011 Sep 10;30(20):2481-98 [PMID: 21268052]
  19. Biom J. 2010 Feb;52(1):85-94 [PMID: 20140900]
  20. Int J Technol Assess Health Care. 2008 Spring;24(2):170-7 [PMID: 18400120]
  21. Stat Med. 2013 Mar 30;32(7):1191-205 [PMID: 23208849]
  22. Stat Med. 2013 Jan 15;32(1):25-39 [PMID: 22815277]
  23. Stat Med. 2004 Oct 30;23(20):3105-24 [PMID: 15449338]
  24. Stat Med. 2014 Jun 15;33(13):2275-87 [PMID: 24918246]
  25. Stat Med. 2013 Feb 28;32(5):752-71 [PMID: 22865748]
  26. Med Decis Making. 2013 Jul;33(5):607-17 [PMID: 23104435]
  27. Res Synth Methods. 2012 Jun;3(2):142-60 [PMID: 26062087]
  28. Stat Med. 1995 Dec 30;14(24):2685-99 [PMID: 8619108]
  29. Res Synth Methods. 2012 Jun;3(2):111-25 [PMID: 26062085]
  30. Res Synth Methods. 2012 Jun;3(2):98-110 [PMID: 26062084]
  31. Stat Med. 2009 Jun 30;28(14):1861-81 [PMID: 19399825]
  32. PLoS One. 2013;8(10):e76654 [PMID: 24098547]
  33. Stat Med. 1996 Dec 30;15(24):2733-49 [PMID: 8981683]
  34. Stat Methods Med Res. 2008 Jun;17(3):279-301 [PMID: 17925316]
  35. Value Health. 2011 Jun;14(4):429-37 [PMID: 21669367]
  36. Stat Med. 2013 Sep 30;32(22):3926-43 [PMID: 23630081]
  37. Med Decis Making. 2013 Jul;33(5):657-70 [PMID: 23804509]
  38. Stat Med. 2007 Jan 15;26(1):78-97 [PMID: 16526010]
  39. Value Health. 2011 Jun;14(4):417-28 [PMID: 21669366]

Grants

  1. R03 DE024750/NIDCR NIH HHS
  2. R21 LM012197/NLM NIH HHS
  3. U54-MD008620/NIMHD NIH HHS
  4. P30CA077598/NCI NIH HHS
  5. AI103012/NIAID NIH HHS
  6. R03DE024750/NIDCR NIH HHS
  7. MR/M005232/1/Medical Research Council
  8. R21 AI103012/NIAID NIH HHS
  9. 1R01-CA157458-01A1/NCI NIH HHS

MeSH Term

Algorithms
Bayes Theorem
Computer Simulation
Humans
Linear Models
Osteoarthritis, Knee
Pain
Randomized Controlled Trials as Topic
Selection Bias
Statistics as Topic

Word Cloud

Created with Highcharts 10.0.0BayesianmissingoutcomesMTCdatatreatmentmultiplemodelrandomapproachesmixedcomparisonsMTCstrialsmeta-analysistreatmentsstudyarmsexistinghierarchicalmethodsoutcomegeneralizedmissingnessmodelsstatisticalbecomingpopularflexibilityinterpretabilityManyrandomizedclinicalreportpossibleinherentcorrelationsMoreovertypicallysparsealthoughricherstandardcomparingtworesearchersoftenchoosebaseduponemergesuperiorpreviouspapersummarizesingleintroducenovelsimultaneouslyratherseparateanalysesincorporatingpartiallyobservedcorrelationstructurecontrast-basedarm-basedparameterizationsconsiderunobservedimputedalsoextendapplytypeslinearcountcontinuousresponsesoffersimulationvariousmechanismsegcompletelyprovidingevidenceoutperformtermsbiasmeansquarederrorcoverageprobabilityillustraterealdatasetclosediscussionresultsseveralcontentiousissuesanalysisavenuesfuturemethodologicaldevelopmentframeworkMarkovchainMonteCarlomechanismnetwork

Similar Articles

Cited By