Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62.

Seong K Kim, Akhalesh K Shakya, Seongman Kim, Dennis J O'Callaghan
Author Information
  1. Seong K Kim: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA skim1@lsuhsc.edu.
  2. Akhalesh K Shakya: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
  3. Seongman Kim: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
  4. Dennis J O'Callaghan: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.

Abstract

The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication.
IMPORTANCE: The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with cellular Mediator 25 in bimolecular complementation assays. The interaction of the IE62 SRT with nucleolar-ribosomal protein EAP resulted in the formation of globular structures within the nucleus. Understanding the mechanisms by which the TAD and SRT of IE62 contribute to the function of this essential regulatory protein is important in understanding the gene program of this human pathogen.

References

  1. Science. 2000 Aug 11;289(5481):905-20 [PMID: 10937989]
  2. J Virol. 2006 May;80(10):5041-9 [PMID: 16641295]
  3. Virology. 2001 Jul 20;286(1):237-47 [PMID: 11448176]
  4. J Virol. 2001 Sep;75(18):8854-8 [PMID: 11507231]
  5. J Virol. 2001 Oct;75(19):9106-13 [PMID: 11533174]
  6. Cell. 2001 Nov 30;107(5):679-88 [PMID: 11733066]
  7. Virology. 2002 Oct 10;302(1):71-82 [PMID: 12429517]
  8. Biochimie. 2002 Aug;84(8):731-43 [PMID: 12457561]
  9. J Med Virol. 2003;70 Suppl 1:S90-4 [PMID: 12627495]
  10. RNA. 2003 Oct;9(10):1188-97 [PMID: 13130133]
  11. J Biol Chem. 2003 Sep 26;278(39):38068-75 [PMID: 12855699]
  12. J Gen Virol. 2003 Nov;84(Pt 11):2957-67 [PMID: 14573800]
  13. Contrib Microbiol. 1999;3:10-20 [PMID: 10599518]
  14. Virology. 2000 Jul 5;272(2):375-81 [PMID: 10873781]
  15. Virology. 1981 Nov;115(1):97-114 [PMID: 6270904]
  16. Nucleic Acids Res. 1987 Jun 11;15(11):4491-511 [PMID: 3035496]
  17. Virology. 1988 Sep;166(1):186-96 [PMID: 2842944]
  18. J Virol. 1989 Sep;63(9):3714-28 [PMID: 2760981]
  19. Virology. 1989 Sep;172(1):223-36 [PMID: 2549711]
  20. Science. 1991 Jan 4;251(4989):87-90 [PMID: 1846049]
  21. EMBO J. 1991 Feb;10(2):459-66 [PMID: 1846807]
  22. J Virol. 1991 Jul;65(7):3829-38 [PMID: 1645793]
  23. J Infect Dis. 2011 Nov;204 Suppl 3:S817-24 [PMID: 21987757]
  24. J Virol. 2013 Jan;87(2):1010-8 [PMID: 23135715]
  25. J Virol. 1992 Jan;66(1):359-66 [PMID: 1309252]
  26. Biochimie. 1991 Jun;73(6):739-55 [PMID: 1764520]
  27. J Virol. 1992 Feb;66(2):936-45 [PMID: 1309921]
  28. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):883-7 [PMID: 8381535]
  29. J Virol. 1993 Jul;67(7):4246-51 [PMID: 8389926]
  30. Virology. 1993 Nov;197(1):349-57 [PMID: 8212570]
  31. J Virol. 1994 Mar;68(3):1350-9 [PMID: 8107200]
  32. Virology. 1994 Apr;200(1):297-300 [PMID: 8128631]
  33. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3463-7 [PMID: 8159770]
  34. Virology. 1994 Aug 1;202(2):760-70 [PMID: 8030239]
  35. J Virol. 1995 Jun;69(6):3857-62 [PMID: 7745735]
  36. J Virol. 1996 Feb;70(2):1050-60 [PMID: 8551563]
  37. J Virol. 1996 Feb;70(2):1061-71 [PMID: 8551564]
  38. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4572-6 [PMID: 8643445]
  39. J Virol. 1997 Feb;71(2):1133-9 [PMID: 8995634]
  40. J Virol. 1997 Mar;71(3):1757-65 [PMID: 9032304]
  41. Virology. 1997 Apr 14;230(2):369-75 [PMID: 9143293]
  42. Biochemistry. 2005 Jan 25;44(3):827-39 [PMID: 15654739]
  43. J Virol. 2006 Aug;80(15):7339-53 [PMID: 16840315]
  44. J Virol. 2007 Jan;81(2):761-74 [PMID: 17079304]
  45. Cell Res. 2007 Jun;17(6):546-55 [PMID: 17502875]
  46. Biochimie. 2007 Dec;89(12):1439-46 [PMID: 17870225]
  47. J Virol. 2008 Mar;82(5):2339-49 [PMID: 18094162]
  48. J Virol. 2008 Dec;82(24):12116-25 [PMID: 18799590]
  49. J Virol. 2008 Dec;82(24):12154-63 [PMID: 18842726]
  50. J Virol. 2009 Apr;83(8):3904-18 [PMID: 19193797]
  51. J Virol. 2009 Jun;83(12):6300-5 [PMID: 19357160]
  52. J Virol. 2010 Sep;84(18):9240-53 [PMID: 20631144]
  53. Nat Struct Mol Biol. 2011 Apr;18(4):410-5 [PMID: 21378963]
  54. J Virol. 2011 Jun;85(12):5733-44 [PMID: 21450820]
  55. Virology. 2011 Sep 1;417(2):430-42 [PMID: 21794889]
  56. Virology. 2001 Jan 5;279(1):173-84 [PMID: 11145900]
  57. Trends Biochem Sci. 2005 May;30(5):250-5 [PMID: 15896743]
  58. Trends Biochem Sci. 2005 May;30(5):256-63 [PMID: 15896744]
  59. Virus Genes. 2005 Oct;31(2):229-39 [PMID: 16025249]
  60. J Virol. 2006 Feb;80(4):1710-23 [PMID: 16439528]
  61. J Struct Funct Genomics. 2011 Sep;12(3):159-66 [PMID: 21785987]

Grants

  1. P20 GM103433/NIGMS NIH HHS
  2. P30 GM110703/NIGMS NIH HHS
  3. P20GM103433/NIGMS NIH HHS
  4. P30-GM110703/NIGMS NIH HHS

MeSH Term

Amino Acid Substitution
Cell Line
DNA Mutational Analysis
Genetic Complementation Test
Herpesvirus 3, Human
Humans
Immediate-Early Proteins
Sequence Deletion
Trans-Activators
Viral Envelope Proteins
Virus Replication

Chemicals

IE62 protein, Human herpesvirus 3
Immediate-Early Proteins
Trans-Activators
Viral Envelope Proteins

Word Cloud

Created with Highcharts 10.0.0IE62SRTproteintrans-activationVZVTADviralvirusHSV-1earlyessentialacidicassays1EHV-1IEPinteractedwithinimmediate62varicella-zostermajortrans-activatordomainsdomainserine-richtractbindingshowedtrans-activatedORF61promoterreplacedactivityICP4complementationVP16Mediator25humannucleolar-ribosomalEAPresultedformationglobularstructuresnucleusimportantgeneinitiateslifecyclekeycomponentpathogenesispossessesseveralincludingUSFTFIIBTATAboxTBPTransient-transfectionlacking16%levelfull-lengthequineherpesviruscompletelyrestoredHerpessimplexlacksweakly5-foldTAD-ICP4chimericexhibitedability102-foldindicatingfunctionstrans-activatepromotersserineresiduesAlaLeuGlyactivitiesmodifiedproteinsIE62-SRTΔSeIE62-SRTΔAcreduced46%29%wild-typerespectivelyBimolecularmelanomaMeWocellsresultssuggestplaysroleexpressionreplicationIMPORTANCE:growthdatashowwellconservedalphaherpesvirusesneededmediatedTADscellularbimolecularinteractionUnderstandingmechanismscontributefunctionregulatoryunderstandingprogrampathogenFunctionalCharacterizationSerine-RichTractVaricella-ZosterVirus

Similar Articles

Cited By