Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions.

Julie Richman Fox, David P Cox, Bertram E Drury, Timothy R Gould, Terrance J Kavanagh, Michael H Paulsen, Lianne Sheppard, Christopher D Simpson, James A Stewart, Timothy V Larson, Joel D Kaufman
Author Information
  1. Julie Richman Fox: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA.
  2. David P Cox: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA.
  3. Bertram E Drury: School of Medicine, University of Missouri, Columbia, MO, USA.
  4. Timothy R Gould: Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA.
  5. Terrance J Kavanagh: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA.
  6. Michael H Paulsen: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA.
  7. Lianne Sheppard: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA. Department of Biostatistics, University of Washington, Seattle, WA, USA.
  8. Christopher D Simpson: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA.
  9. James A Stewart: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA.
  10. Timothy V Larson: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA. Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA.
  11. Joel D Kaufman: Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA.

Abstract

Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects.

Keywords

References

  1. Free Radic Biol Med. 2001 Mar 1;30(5):555-62 [PMID: 11182526]
  2. J Air Waste Manag Assoc. 2001 Jun;51(6):809-47 [PMID: 11417675]
  3. Chem Res Toxicol. 2002 Apr;15(4):483-9 [PMID: 11952333]
  4. Environ Health Perspect. 2003 Apr;111(4):455-60 [PMID: 12676598]
  5. Toxicology. 2003 May 3;187(2-3):161-70 [PMID: 12699905]
  6. Int Arch Occup Environ Health. 1992;64(3):149-61 [PMID: 1383162]
  7. Clin Immunol. 2003 Dec;109(3):250-65 [PMID: 14697739]
  8. Toxicol Sci. 2004 Sep;81(1):225-32 [PMID: 15201441]
  9. Inhal Toxicol. 2004;16 Suppl 1:107-14 [PMID: 15204799]
  10. Environ Health Perspect. 2004 Sep;112(13):1307-12 [PMID: 15345344]
  11. Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L739-49 [PMID: 15964899]
  12. Chem Biol Interact. 2007 Mar 20;166(1-3):163-9 [PMID: 16860297]
  13. J Toxicol Environ Health A. 2006 Sep;69(18):1699-710 [PMID: 16864420]
  14. Science. 2007 Mar 2;315(5816):1259-62 [PMID: 17332409]
  15. Nat Protoc. 2006;1(5):2315-9 [PMID: 17406473]
  16. Nat Protoc. 2007;2(2):329-33 [PMID: 17406593]
  17. Part Fibre Toxicol. 2007 Jun 07;4:5 [PMID: 17555562]
  18. Environ Sci Technol. 2007 Oct 15;41(20):6969-75 [PMID: 17993136]
  19. Inhal Toxicol. 2008 Jan;20(1):49-52 [PMID: 18236222]
  20. Inhal Toxicol. 2008 Jan;20(1):75-99 [PMID: 18236225]
  21. Cancer Lett. 2008 Jul 18;266(1):84-97 [PMID: 18367322]
  22. Part Fibre Toxicol. 2008 Apr 08;5:6 [PMID: 18397523]
  23. Biotechniques. 2008 Feb;44(2):ix-xiv [PMID: 18422490]
  24. J Air Waste Manag Assoc. 2008 Jun;58(6):829-37 [PMID: 18581813]
  25. Inhal Toxicol. 2009 Feb;21(3):200-9 [PMID: 18991064]
  26. J Environ Monit. 2009 Jan;11(1):153-9 [PMID: 19137151]
  27. Environ Sci Technol. 2008 Dec 15;42(24):9276-82 [PMID: 19174904]
  28. Environ Sci Technol. 2008 Dec 1;42(23):8822-8 [PMID: 19192804]
  29. Environ Res. 2009 Apr;109(3):239-44 [PMID: 19200952]
  30. Pulm Pharmacol Ther. 2009 Aug;22(4):286-96 [PMID: 19254777]
  31. Crit Rev Toxicol. 2009;39(3):195-227 [PMID: 19280432]
  32. Small. 2009 Apr;5(7):846-53 [PMID: 19288475]
  33. Res Rep Health Eff Inst. 2009 Feb;(138):5-109; discussion 111-23 [PMID: 19449765]
  34. Environ Sci Technol. 2009 May 15;43(10):3905-12 [PMID: 19544906]
  35. Environ Sci Technol. 2009 Aug 15;43(16):6334-40 [PMID: 19746734]
  36. Environ Sci Technol. 2010 Jan 1;44(1):216-21 [PMID: 20039750]
  37. Circulation. 2010 Jun 1;121(21):2331-78 [PMID: 20458016]
  38. Methods Mol Biol. 2011;716:157-68 [PMID: 21318905]
  39. Inhal Toxicol. 2011 Mar;23(4):219-25 [PMID: 21438706]
  40. Environ Health Perspect. 2011 Aug;119(8):1136-41 [PMID: 21524982]
  41. Exp Mol Med. 2011 Aug 31;43(8):471-8 [PMID: 21691142]
  42. Toxicol Lett. 2011 Sep 10;205(3):227-34 [PMID: 21729742]
  43. Methods Mol Biol. 2011;769:25-30 [PMID: 21748666]
  44. Toxicol In Vitro. 2011 Dec;25(8):2064-73 [PMID: 21920430]
  45. Toxicol Lett. 2012 Feb 5;208(3):262-8 [PMID: 22100492]
  46. Arch Toxicol. 2012 Apr;86(4):633-42 [PMID: 22105178]
  47. Nanotoxicology. 2013 Mar;7(2):181-91 [PMID: 22264017]
  48. Arch Toxicol. 2012 Jun;86(6):879-96 [PMID: 22488045]
  49. BMC Complement Altern Med. 2012 Apr 26;12:54 [PMID: 22536886]
  50. Swiss Med Wkly. 2012 May 31;142:w13597 [PMID: 22653425]
  51. Environ Sci Technol. 2012 Aug 21;46(16):9062-70 [PMID: 22834915]
  52. Lancet Oncol. 2012 Jul;13(7):663-4 [PMID: 22946126]
  53. J Toxicol Environ Health A. 2013;76(2):71-85 [PMID: 23294296]
  54. Atmos Chem Phys. 2012 May 3;12(5):11317-11350 [PMID: 23393494]
  55. Atmos Chem Phys Discuss. 2012;12(2):5065-5105 [PMID: 23457430]
  56. Cytokine. 2013 Apr;62(1):1-21 [PMID: 23490414]
  57. Arterioscler Thromb Vasc Biol. 2013 Jun;33(6):1153-61 [PMID: 23559632]
  58. Cardiovasc Toxicol. 2013 Sep;13(3):290-300 [PMID: 23584878]
  59. Invest Ophthalmol Vis Sci. 2013 Jul 16;54(7):4759-65 [PMID: 23722391]
  60. Biol Chem. 2014 Feb;395(2):203-30 [PMID: 24127541]
  61. Res Rep Health Eff Inst. 2013 Oct;(178):5-8 [PMID: 24377210]
  62. J Air Waste Manag Assoc. 2009 Feb;59(2):163-171 [PMID: 29116921]
  63. Cytotechnology. 1993;11(1):49-58 [PMID: 7763636]
  64. Int Arch Occup Environ Health. 1994;66(2):77-83 [PMID: 7806400]
  65. Chem Res Toxicol. 1996 Jan-Feb;9(1):197-207 [PMID: 8924591]

Grants

  1. P30 ES007033/NIEHS NIH HHS
  2. P50 ES015915/NIEHS NIH HHS
  3. T32 ES007032/NIEHS NIH HHS
  4. T32 ES015459/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0DEtoxicityengineloadexhaustexposurereactivityvitroconditionsdieselcompositionoxidativeassaystudiesgeneratedthreeparametersvsparticle~5DEPviameasuredcelltimeshigherbiologicalEpidemiologiclinkedcardiovascularrespiratorymorbiditymortalitywelllungcancerknownvarymanyfactorsalthoughunclearinfluenceseightatmospheresapplying2×2×2factorialdesignalteringcontrolledfacility:12782%2agingresidencetimesminpriorcollection3oxidationwithoutozonationdilutionSelectedconcentrationsparticlesDEPsgasesDTTactivitymurineendothelialcellsatmosphereCellassessedmeasurementproliferationcolonyformationviabilityMTTwoundhealingscratchDifferencesobservedfunctionmean1-nitropyreneconcentration15twolowversushighsubstantialdifferencesamongresultsindicatealterationappliedshiftscanmodifyaffectselectedmeasureschangesuggeststoxicologicalneedtakeaccountcharacterizingeffectsChemicalcharacterizationparticulatemattervaryingAirpollutionDieselPhysicochemicalpropertiesVarying

Similar Articles

Cited By