Cassava root membrane proteome reveals activities during storage root maturation.

Maliwan Naconsie, Manassawe Lertpanyasampatha, Unchera Viboonjun, Supatcharee Netrphan, Masayoshi Kuwano, Naotake Ogasawara, Jarunya Narangajavana
Author Information
  1. Maliwan Naconsie: Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand.
  2. Manassawe Lertpanyasampatha: Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand.
  3. Unchera Viboonjun: Deparment of Plant Science, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand.
  4. Supatcharee Netrphan: National Center for Genetic Engineering and Biotechnology (BIOTEC), Rangsit, Pathumthani, 10210, Thailand.
  5. Masayoshi Kuwano: Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
  6. Naotake Ogasawara: Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
  7. Jarunya Narangajavana: Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand. scjnr@mahidol.ac.th.

Abstract

Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

Keywords

References

  1. Plant Cell. 2009 Apr;21(4):1239-51 [PMID: 19376935]
  2. Plant Physiol. 1985 Mar;77(3):571-7 [PMID: 16664100]
  3. Plant Cell. 2012 Jul;24(7):2792-811 [PMID: 22805435]
  4. Plant Cell Rep. 2008 Jan;27(1):1-8 [PMID: 17906863]
  5. Ann Bot. 2007 Mar;99(3):409-23 [PMID: 17267513]
  6. Curr Biol. 2009 Sep 15;19(17):R800-11 [PMID: 19906582]
  7. Plant Biotechnol J. 2005 Mar;3(2):175-85 [PMID: 17173618]
  8. Methods Enzymol. 1976;44:746-59 [PMID: 15194]
  9. Plant Biotechnol J. 2005 Sep;3(5):505-19 [PMID: 17173637]
  10. FEBS Lett. 2007 Oct 16;581(25):4841-9 [PMID: 17888913]
  11. Planta. 2003 Dec;218(2):192-203 [PMID: 13680228]
  12. Plant Physiol. 2008 Mar;146(3):1231-41 [PMID: 18192441]
  13. Plant Physiol. 2005 Feb;137(2):762-78 [PMID: 15684019]
  14. J Exp Bot. 2006;57(7):1591-602 [PMID: 16595579]
  15. Plant Physiol. 2005 Dec;139(4):1773-83 [PMID: 16299173]
  16. Plant J. 1998 Apr;14(2):147-57 [PMID: 9628012]
  17. Plant Physiol. 2006 Feb;140(2):613-23 [PMID: 16384901]
  18. Proteomics. 2006 Mar;6(5):1588-98 [PMID: 16421938]
  19. Curr Opin Plant Biol. 2007 Dec;10(6):549-56 [PMID: 17936064]
  20. Phytochemistry. 2005 May;66(9):968-74 [PMID: 15896364]
  21. Plant J. 2011 Jul;67(1):145-56 [PMID: 21435052]
  22. Plant Physiol. 1999 Aug;120(4):979-92 [PMID: 10444081]
  23. J Cell Biol. 1992 Sep;118(6):1321-32 [PMID: 1522110]
  24. Plant Cell Physiol. 2008 Mar;49(3):469-80 [PMID: 18272530]
  25. Plant Cell. 2011 Dec;23(12):4411-27 [PMID: 22209764]
  26. Biochim Biophys Acta. 2002 Sep 2;1592(1):63-77 [PMID: 12191769]
  27. Plant Physiol. 2010 Nov;154(3):1143-57 [PMID: 20876337]
  28. Plant Cell. 2011 Dec;23(12):4492-506 [PMID: 22158465]
  29. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  30. Plant Signal Behav. 2013 Feb;8(2):e22815 [PMID: 23154507]
  31. Plant Physiol. 1986 Feb;80(2):301-4 [PMID: 16664617]
  32. FEBS Lett. 2007 May 1;581(9):1898-902 [PMID: 17434493]
  33. Plant J. 2003 Apr;34(1):57-66 [PMID: 12662309]
  34. Plant Physiol. 2010 Jul;153(3):1385-97 [PMID: 20488895]
  35. Plant Mol Biol. 2000 Jul;43(4):473-82 [PMID: 11052199]
  36. J Mol Biol. 2005 May 13;348(4):857-70 [PMID: 15843018]
  37. Funct Integr Genomics. 2006 Oct;6(4):322-37 [PMID: 16408205]
  38. FEBS Lett. 2007 May 22;581(11):2140-9 [PMID: 17397838]
  39. Plant Physiol. 1986 Jul;81(3):802-6 [PMID: 16664906]
  40. Plant Mol Biol. 2001 Aug;46(6):705-15 [PMID: 11575725]
  41. Plant Cell. 2008 Aug;20(8):2205-20 [PMID: 18676877]
  42. Eur J Biochem. 1992 Apr 1;205(1):425-31 [PMID: 1555602]
  43. Proteomics. 2006 Nov;6(22):6042-52 [PMID: 17106910]
  44. Plant Physiol Biochem. 2005 Aug;43(8):729-45 [PMID: 16122935]
  45. Plant Cell Physiol. 2010 Feb;51(2):190-200 [PMID: 20007290]
  46. Phytochemistry. 2010 Oct;71(14-15):1615-24 [PMID: 20655074]
  47. J Integr Plant Biol. 2011 Mar;53(3):193-211 [PMID: 21205184]
  48. Plant Cell. 2011 Jan;23(1):210-23 [PMID: 21278127]
  49. Plant J. 2007 May;50(3):381-90 [PMID: 17376163]
  50. Plant Cell. 2000 Apr;12(4):479-92 [PMID: 10760238]
  51. Plant Mol Biol. 1998 Jun;37(3):495-504 [PMID: 9617816]
  52. Plant Mol Biol. 2001 May;46(2):241-50 [PMID: 11442063]
  53. Plant Physiol. 2004 Mar;134(3):912-8 [PMID: 15020755]
  54. New Phytol. 2011 Jan;189(1):40-53 [PMID: 21083562]
  55. New Phytol. 2012 Jul;195(1):189-202 [PMID: 22497207]
  56. Biochim Biophys Acta. 2013 Feb;1833(2):304-13 [PMID: 22406071]
  57. Plant Cell Physiol. 2002 Dec;43(12 ):1445-55 [PMID: 12514241]
  58. Planta. 2011 Jun;233(6):1209-21 [PMID: 21327816]
  59. FEBS J. 2008 Feb;275(3):399-410 [PMID: 18167147]
  60. Proteome Sci. 2010 Apr 28;8:23 [PMID: 20426826]
  61. Plant Cell. 2012 Jun;24(6):2328-51 [PMID: 22751214]
  62. Plant Cell. 2001 Jul;13(7):1567-86 [PMID: 11449052]
  63. Nat Commun. 2014 Oct 10;5:5110 [PMID: 25300236]
  64. Proteome Sci. 2010 Feb 27;8:10 [PMID: 20187967]
  65. Plant Cell Physiol. 2009 Oct;50(10):1840-50 [PMID: 19748911]
  66. Plant Physiol. 2005 Sep;139(1):39-51 [PMID: 16113210]
  67. Plant Mol Biol. 2001 Aug;46(6):639-50 [PMID: 11575719]
  68. Plant Physiol. 1992 Oct;100(2):557-9 [PMID: 16653028]
  69. Plant Physiol. 2002 Jul;129(3):1308-19 [PMID: 12114584]
  70. Plant Physiol. 2001 Oct;127(2):615-23 [PMID: 11598235]
  71. Plant Physiol. 2001 Nov;127(3):777-91 [PMID: 11706162]
  72. Plant J. 2006 Oct;48(2):249-60 [PMID: 16995899]
  73. BMC Plant Biol. 2014 Aug 05;14:208 [PMID: 25091029]

MeSH Term

Chromatography, Liquid
Electrophoresis, Gel, Two-Dimensional
Gene Expression Regulation, Plant
Manihot
Plant Proteins
Plant Roots
Proteome
Sequence Analysis, DNA
Tandem Mass Spectrometry
Transcriptome

Chemicals

Plant Proteins
Proteome

Word Cloud

Created with Highcharts 10.0.0storagerootcassavaproteinsmaturationCassavarootsexpressionmembraneproteinimportantproductioninvolvedstudyproteomestagesusingsecondarydevelopmentidentifiedfoldingdegradationenergymetabolismactivitiesManihotesculentaCrantzonecropsThailandusedfoodfeedstarchsourcebiofuelbiodegradableplasticDespiteimportancelittleknownmechanismsformationpresentfocusedcomparisonprofilesvariousdevelopmentaltwo-dimensionalgelelectrophoresisLC-MS/MSBasedanatomicalToluidineBluegrowthconfirmedessentialinvestigatebiochemicalprocessesoccurringsolubleisolatedharvested3-6-9-12-month-oldplantsdifferentialpatternanalysedassociated8functionalgroups:stressresponsetransportfacilitationcytoskeletonunclassifiedfunctionprofilingrevealedcellstructurehighlyexpressedearlyIntegrationdataalonginformationavailablegenometranscriptomedatabasescriticalexpandknowledgeobtainedsolelyfieldproteomicsPossiblerolediscussedrelationrevealsMembraneProteomicStorage

Similar Articles

Cited By