Modeling spatio-temporal dynamics of network damage and network recovery.

Mohammadkarim Saeedghalati, Abdolhosein Abbassian
Author Information
  1. Mohammadkarim Saeedghalati: BioMath, School of Mathematics, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran.
  2. Abdolhosein Abbassian: BioMath, School of Mathematics, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran.

Abstract

How networks endure damage is a central issue in neural network research. In this paper, we study the slow and fast dynamics of network damage and compare the results for two simple but very different models of recurrent and feed forward neural network. What we find is that a slower degree of network damage leads to a better chance of recovery in both types of network architecture. This is in accord with many experimental findings on the damage inflicted by strokes and by slowly growing tumors. Here, based on simulation results, we explain the seemingly paradoxical observation that disability caused by lesions, affecting large portions of tissue, may be less severe than the disability caused by smaller lesions, depending on the speed of lesion growth.

Keywords

References

  1. Stroke Res Treat. 2010 Dec 20;2011:879817 [PMID: 21197408]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):015101 [PMID: 12636544]
  3. J Comp Physiol Psychol. 1958 Oct;51(5):546-8 [PMID: 13587681]
  4. Neuropsychologia. 1977;15(1):179-82 [PMID: 401532]
  5. J Comp Physiol Psychol. 1951 Oct;44(5):479-86 [PMID: 14888743]
  6. Brain. 1996 Dec;119 ( Pt 6):1849-57 [PMID: 9009992]
  7. J Neurol Neurosurg Psychiatry. 2002 Apr;72(4):511-6 [PMID: 11909913]
  8. J Comp Physiol Psychol. 1972 Jun;79(3):481-7 [PMID: 4341017]
  9. Front Comput Neurosci. 2009 Aug 04;3:10 [PMID: 19680468]
  10. Exp Neurol. 1975 Jun;47(3):470-80 [PMID: 1132460]
  11. Stroke. 1996 Jun;27(6):1105-9; discussion 1109-11 [PMID: 8650722]
  12. J Neurosurg. 2003 Apr;98(4):764-78 [PMID: 12691401]
  13. Hippocampus. 2008;18(9):879-98 [PMID: 18481284]
  14. Phys Rev Lett. 2000 Dec 18;85(25):5468-71 [PMID: 11136023]
  15. Neuron. 2009 Feb 26;61(4):621-34 [PMID: 19249281]
  16. Brain. 2007 Apr;130(Pt 4):898-914 [PMID: 17121742]
  17. J Neurosci. 1988 May;8(5):1704-11 [PMID: 2835450]
  18. Phys Rev Lett. 2001 Apr 16;86(16):3682-5 [PMID: 11328053]
  19. PLoS Comput Biol. 2009 Jun;5(6):e1000408 [PMID: 19521503]
  20. Science. 1971 Jul 23;173(3994):353-6 [PMID: 4997798]
  21. J Comp Physiol Psychol. 1971 Nov;77(2):221-7 [PMID: 5117202]
  22. Nature. 2000 Jul 27;406(6794):378-82 [PMID: 10935628]
  23. J Neurosurg. 1959 Jan;16(1):85-97; discussion 97-8 [PMID: 13621267]
  24. Stroke. 2003 Jun;34(6):1553-66 [PMID: 12738893]
  25. IEEE Trans Med Imaging. 2011 May;30(5):1154-65 [PMID: 21478072]
  26. Trends Neurosci. 1989 Jul;12(7):265-70 [PMID: 2475939]

Word Cloud

Created with Highcharts 10.0.0networkdamagedynamicsrecoveryneuralslowfastresultsmodelsdisabilitycausedlesionsbrainnetworksendurecentralissueresearchpaperstudycomparetwosimpledifferentrecurrentfeedforwardfindslowerdegreeleadsbetterchancetypesarchitectureaccordmanyexperimentalfindingsinflictedstrokesslowlygrowingtumorsbasedsimulationexplainseeminglyparadoxicalobservationaffectinglargeportionstissuemaylessseveresmallerdependingspeedlesiongrowthModelingspatio-temporalspatiotemporal

Similar Articles

Cited By