Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies.

Kasper Krogh Andersen, Nika M Strokappe, Anna Hultberg, Kai Truusalu, Imbi Smidt, Raik-Hiio Mikelsaar, Marika Mikelsaar, Theo Verrips, Lennart Hammarström, Harold Marcotte
Author Information
  1. Kasper Krogh Andersen: Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
  2. Nika M Strokappe: Cellular Architecture and Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands.
  3. Anna Hultberg: Cellular Architecture and Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands.
  4. Kai Truusalu: Department of Microbiology, University of Tartu, Tartu, Estonia.
  5. Imbi Smidt: Department of Microbiology, University of Tartu, Tartu, Estonia.
  6. Raik-Hiio Mikelsaar: Department of Microbiology, University of Tartu, Tartu, Estonia.
  7. Marika Mikelsaar: Department of Microbiology, University of Tartu, Tartu, Estonia.
  8. Theo Verrips: Cellular Architecture and Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands.
  9. Lennart Hammarström: Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
  10. Harold Marcotte: Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden Harold.Marcotte@ki.se.

Abstract

Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA(-) TcdB(+) strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients.

References

  1. PLoS One. 2011;6(4):e17665 [PMID: 21483777]
  2. N Engl J Med. 2010 Jan 21;362(3):264-5 [PMID: 20089977]
  3. BMC Biotechnol. 2011;11:126 [PMID: 22185669]
  4. J Med Microbiol. 2005 Feb;54(Pt 2):197-205 [PMID: 15673517]
  5. J Antimicrob Chemother. 2005 Jun;55(6):974-82 [PMID: 15860551]
  6. Appl Environ Microbiol. 2011 Mar;77(6):2174-9 [PMID: 21257814]
  7. Gut. 1979 Jun;20(6):467-75 [PMID: 468072]
  8. J Mol Biol. 1991 Dec 5;222(3):581-97 [PMID: 1748994]
  9. J Med Microbiol. 1998 Jul;47(7):591-8 [PMID: 9839563]
  10. Clin Infect Dis. 2011 Nov;53(10):994-1002 [PMID: 22002980]
  11. Methods Mol Biol. 2010;646:215-27 [PMID: 20597012]
  12. Nat Rev Microbiol. 2008 May;6(5):349-62 [PMID: 18345021]
  13. Nature. 2009 Apr 30;458(7242):1176-9 [PMID: 19252482]
  14. N Engl J Med. 2011 Nov 3;365(18):1693-703 [PMID: 22047560]
  15. J Med Microbiol. 2011 Aug;60(Pt 8):1181-7 [PMID: 21474614]
  16. Trends Microbiol. 2012 Jan;20(1):21-9 [PMID: 22154163]
  17. Poult Sci. 1998 Feb;77(2):266-70 [PMID: 9495491]
  18. N Engl J Med. 2010 Jan 21;362(3):197-205 [PMID: 20089970]
  19. J Med Microbiol. 2011 Aug;60(Pt 8):1070-9 [PMID: 21415200]
  20. Toxicon. 1992 Apr;30(4):419-26 [PMID: 1626323]
  21. Nature. 2010 Oct 7;467(7316):711-3 [PMID: 20844489]
  22. Infect Immun. 2006 Nov;74(11):6339-47 [PMID: 16966409]
  23. Appl Microbiol Biotechnol. 2006 Sep;72(3):544-51 [PMID: 16450109]
  24. Infect Immun. 2000 Mar;68(3):1094-101 [PMID: 10678912]
  25. Clin Microbiol Rev. 2010 Jul;23(3):529-49 [PMID: 20610822]
  26. Gut Microbes. 2012 Mar-Apr;3(2):145-67 [PMID: 22555466]
  27. PLoS One. 2012;7(3):e33298 [PMID: 22438910]
  28. J Med Microbiol. 2004 Feb;53(Pt 2):167-72 [PMID: 14729940]
  29. Am J Gastroenterol. 2013 Apr;108(4):500-8 [PMID: 23511459]
  30. J Infect Dis. 2006 Dec 1;194(11):1580-8 [PMID: 17083044]
  31. Infect Immun. 1991 Jun;59(6):2215-8 [PMID: 2037383]
  32. Lancet. 2001 Jan 20;357(9251):189-93 [PMID: 11213096]
  33. Antimicrob Agents Chemother. 1997 Feb;41(2):236-41 [PMID: 9021173]
  34. FEMS Immunol Med Microbiol. 2008 Mar;52(2):207-18 [PMID: 18093141]
  35. J Appl Microbiol. 2006 Feb;100(2):256-63 [PMID: 16430501]
  36. PLoS One. 2011;6(11):e28218 [PMID: 22140551]
  37. Nat Protoc. 2006;1(2):581-5 [PMID: 17406285]
  38. Biochim Biophys Acta. 2006 Aug;1764(8):1307-19 [PMID: 16872921]
  39. Infect Immun. 1998 May;66(5):2018-25 [PMID: 9573084]
  40. Dev Biol Stand. 1985;60:125-31 [PMID: 4043530]
  41. J Infect Dis. 2014 Sep 15;210(6):964-72 [PMID: 24683195]
  42. Protein Eng Des Sel. 2012 Jan;25(1):39-46 [PMID: 22143875]
  43. J Infect Dis. 2001 Jun 15;183(12):1760-6 [PMID: 11372028]
  44. Gastroenterology. 2009 May;136(6):1913-24 [PMID: 19457419]
  45. J Biol Chem. 2011 Mar 18;286(11):8961-76 [PMID: 21216961]
  46. Gut. 2007 Jun;56(6):888-9 [PMID: 17519495]
  47. Infect Control Hosp Epidemiol. 2010 May;31(5):431-55 [PMID: 20307191]
  48. Clin Infect Dis. 2004 Mar 1;38(5):646-8 [PMID: 14986247]
  49. Lancet. 2005 Sep 24-30;366(9491):1079-84 [PMID: 16182895]
  50. Therap Adv Gastroenterol. 2011 May;4(3):185-97 [PMID: 21694803]

MeSH Term

Administration, Oral
Animals
Antibodies, Neutralizing
Antitoxins
Bacterial Proteins
Bacterial Toxins
Camelids, New World
Clostridioides difficile
Cricetinae
Disease Models, Animal
Enterocolitis, Pseudomembranous
Escherichia coli
Gastrointestinal Tract
Immunization
Immunization, Passive
Immunoglobulin Heavy Chains
Lactobacillus
Recombinant Proteins
Single-Domain Antibodies

Chemicals

Antibodies, Neutralizing
Antitoxins
Bacterial Proteins
Bacterial Toxins
Immunoglobulin Heavy Chains
Recombinant Proteins
Single-Domain Antibodies
toxB protein, Clostridium difficile

Word Cloud

Created with Highcharts 10.0.0difficiletoxinTcdBfragmentsVHHCtwoClostridiumcausediarrheaTcdABcolonicinflammationdamageexploredstrategyengineeredLactobacillusstrainsexpressingneutralizingvitroeitherparacaseiBL23effecthamstermodelprimarynosocomialantibiotic-associatedWesternworldmajorvirulencefactorsexotoxinsextensiveepithelialmanifestedepisodesstudybasisoralantitoxinbasedTcdB-neutralizingantibodygastrointestinaltractVariabledomainheavychain-onlyantibodiesraisedllamasimmunizationcompleteFouruniqueisolatedexpressedsecretedcellwall-anchoredformableneutralizecytotoxiccell-basedassayProphylactictreatmentcombinationLanti-TcdBVHH-B2VHH-G3delayedkillingprotectionanimalschallengedspores-+strainP<005Halfhamsterstreatedgroupsurvivedterminationexperimentday5showedlimitedmucosadespitecolonized4daysprotectivesuggestssupplementexistingtherapiespatientsNeutralizationToxinMediatedEngineeredLactobacilliProduceSingle-DomainAntibodies

Similar Articles

Cited By