Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway.

Sylvia Simon, Ursula Schell, Natalie Heuer, Dominik Hager, Michael F Albers, Jan Matthias, Felix Fahrnbauer, Dirk Trauner, Ludwig Eichinger, Christian Hedberg, Hubert Hilbi
Author Information
  1. Sylvia Simon: Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany.
  2. Ursula Schell: Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany.
  3. Natalie Heuer: Institute of Biochemistry I, University of Cologne, Cologne, Germany.
  4. Dominik Hager: Department of Chemistry, Ludwig-Maximilians University, Munich, Germany.
  5. Michael F Albers: Department of Chemistry and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden.
  6. Jan Matthias: Institute of Biochemistry I, University of Cologne, Cologne, Germany.
  7. Felix Fahrnbauer: Department of Chemistry, Ludwig-Maximilians University, Munich, Germany.
  8. Dirk Trauner: Department of Chemistry, Ludwig-Maximilians University, Munich, Germany.
  9. Ludwig Eichinger: Institute of Biochemistry I, University of Cologne, Cologne, Germany.
  10. Christian Hedberg: Department of Chemistry and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden.
  11. Hubert Hilbi: Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany.

Abstract

Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9.

References

  1. Nucleic Acids Res. 2004;32(5):1647-53 [PMID: 15010511]
  2. Mol Cancer. 2013;12(1):170 [PMID: 24359616]
  3. Cell Microbiol. 2015 Jul;17(7):935-50 [PMID: 25903720]
  4. Clin Microbiol Rev. 2010 Apr;23(2):274-98 [PMID: 20375353]
  5. Curr Opin Microbiol. 2009 Apr;12(2):192-8 [PMID: 19318290]
  6. J Clin Invest. 2010 Apr;120(4):1178-91 [PMID: 20335658]
  7. Environ Microbiol. 2013 Feb;15(2):646-62 [PMID: 23033905]
  8. J Biol Chem. 2009 Feb 20;284(8):4846-56 [PMID: 19095644]
  9. PLoS One. 2013;8(2):e55045 [PMID: 23405110]
  10. PLoS Pathog. 2009 Nov;5(11):e1000671 [PMID: 19956712]
  11. J Biol Chem. 2002 Jul 5;277(27):24753-63 [PMID: 11948177]
  12. PLoS Pathog. 2006 May;2(5):e46 [PMID: 16710455]
  13. J Bacteriol. 2008 Nov;190(22):7532-47 [PMID: 18805977]
  14. J Biol Chem. 2008 Jun 27;283(26):18113-23 [PMID: 18411263]
  15. Mol Microbiol. 2011 Mar;79(6):1403-6 [PMID: 21388458]
  16. Methods Mol Biol. 2013;954:233-49 [PMID: 23150400]
  17. PLoS Pathog. 2012;8(10):e1002953 [PMID: 23071436]
  18. Sensors (Basel). 2012;12(3):2899-919 [PMID: 22736983]
  19. Biotechniques. 2001 Nov;31(5):1140-2, 1144, 1146-9 [PMID: 11730020]
  20. Annu Rev Cell Dev Biol. 2010;26:261-83 [PMID: 20929312]
  21. Cell Host Microbe. 2013 Sep 11;14(3):256-68 [PMID: 24034612]
  22. Environ Microbiol Rep. 2011 Jun;3(3):286-96 [PMID: 23761274]
  23. Appl Environ Microbiol. 2006 Apr;72(4):2885-95 [PMID: 16597995]
  24. Nature. 2005 May 5;435(7038):43-57 [PMID: 15875012]
  25. Mol Microbiol. 2014 Feb;91(4):821-33 [PMID: 24372841]
  26. Environ Microbiol. 2010 May;12(5):1243-59 [PMID: 20148929]
  27. EMBO J. 1996 Jun 17;15(12):2997-3005 [PMID: 8670801]
  28. Microb Pathog. 2012 Nov-Dec;53(5-6):207-13 [PMID: 22835851]
  29. Cell Microbiol. 2008 Dec;10(12):2416-33 [PMID: 18673369]
  30. Traffic. 2012 Sep;13(9):1187-97 [PMID: 22340894]
  31. Sci STKE. 2003 Feb 18;2003(170):PL5 [PMID: 12591998]
  32. Cell Mol Life Sci. 2014 Aug;71(15):2775-85 [PMID: 24664433]
  33. Cell Microbiol. 2014 Jul;16(7):1034-52 [PMID: 24373249]
  34. Mol Microbiol. 2016 Feb;99(4):778-93 [PMID: 26538361]
  35. PLoS Pathog. 2013 Sep;9(9):e1003598 [PMID: 24068924]
  36. Nat Protoc. 2007;2(2):329-33 [PMID: 17406593]
  37. Infect Immun. 1993 Dec;61(12):5361-73 [PMID: 8225610]
  38. Small GTPases. 2013 Oct-Dec;4(4):199-207 [PMID: 24355937]
  39. Curr Opin Microbiol. 2009 Apr;12(2):205-14 [PMID: 19251475]
  40. Curr Top Microbiol Immunol. 2013;376:155-73 [PMID: 23918172]
  41. ACS Chem Biol. 2011 Apr 15;6(4):356-65 [PMID: 21197957]
  42. Cell Microbiol. 2007 Dec;9(12):2903-20 [PMID: 17614967]
  43. J Biol Chem. 2014 Sep 19;289(38):26566-73 [PMID: 25092291]
  44. Microbes Environ. 2012;27(4):423-9 [PMID: 23100025]
  45. BMC Genomics. 2007;8:123 [PMID: 17517120]
  46. Nature. 2007 Dec 6;450(7171):883-6 [PMID: 18004304]
  47. Cell Microbiol. 2009 Mar;11(3):442-60 [PMID: 19021631]
  48. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17915-20 [PMID: 17095609]
  49. Trends Cell Biol. 2006 May;16(5):242-9 [PMID: 16595175]
  50. Mol Microbiol. 2014 Jun;92(5):1039-55 [PMID: 24720786]
  51. J Clin Microbiol. 1979 Oct;10(4):437-41 [PMID: 393713]
  52. J Biol Chem. 2007 Oct 12;282(41):30265-72 [PMID: 17693642]
  53. Trends Microbiol. 2010 Jul;18(7):288-97 [PMID: 20382022]
  54. Cell Microbiol. 2006 Mar;8(3):438-56 [PMID: 16469056]
  55. RNA Biol. 2012 Apr;9(4):503-19 [PMID: 22546937]
  56. J Immunol. 2013 Dec 15;191(12):5933-40 [PMID: 24218450]
  57. Mol Microbiol. 2011 Mar;79(6):1407-17 [PMID: 21219472]
  58. Annu Rev Genet. 2009;43:197-222 [PMID: 19686078]
  59. Cell Signal. 2012 Apr;24(4):826-34 [PMID: 22182509]
  60. Cell Microbiol. 2014 Jul;16(7):977-92 [PMID: 24397557]
  61. Nat Rev Microbiol. 2009 Jan;7(1):13-24 [PMID: 19011659]
  62. Bioorg Med Chem. 2011 Nov 15;19(22):6906-18 [PMID: 22001326]
  63. Cell Microbiol. 2013 Jul;15(7):1059-69 [PMID: 23351274]
  64. Mol Microbiol. 1998 Oct;30(1):197-208 [PMID: 9786196]

MeSH Term

4-Butyrolactone
Animals
Bacterial Proteins
Blotting, Western
Cell Line
Cell Movement
Host-Parasite Interactions
Legionella pneumophila
Legionnaires' Disease
Microscopy, Fluorescence
Quorum Sensing
RNA, Small Interfering
Real-Time Polymerase Chain Reaction
Rho Guanine Nucleotide Exchange Factors
Signal Transduction
Transfection
cdc42 GTP-Binding Protein
ras GTPase-Activating Proteins

Chemicals

ARHGEF9 protein, human
Bacterial Proteins
IQ motif containing GTPase activating protein 1
RNA, Small Interfering
Rho Guanine Nucleotide Exchange Factors
ras GTPase-Activating Proteins
N-(3-oxohexanoyl)-3-aminodihydro-2(3H)-furanone
cdc42 GTP-Binding Protein
4-Butyrolactone

Word Cloud

Created with Highcharts 10.0.0LAI-1cellmigrationCdc42signalingpneumophilabacteriaLegionellaLcellsIQGAP1communicationwellbacterialquorumsensinguptakeinhibitionGTPaseARHGEF9compoundpathwaySmallmoleculepromoteseukaryotesopportunisticpathogenicbacteriumemploys3-hydroxypentadecane-4-onecell-cellproduceddetectedLqssystemregulatesvarietyprocessesincludingnaturalcompetenceDNApathogen-hostinteractionsstudyanalyzeroleinter-kingdomlackingautoinducersynthaseLqsAlongerimpededinfecteddefectcomplementedplasmid-bornelqsASyntheticdose-dependentlyinhibitedwithoutaffectingcytotoxicityforwardindexvelocityLAI-1-treatedreducedcytoskeletonappeareddestabilizedLAI-1-dependentinvolvedscaffoldproteinsmallCdc42-specificguaninenucleotideexchangefactormodulatorsRhoARac1RanUpontreatmentinactivatedredistributedcortexregardlesswhetherpresentFurthermorereversedsuggestingantagonisticallytargethostsCollectivelyresultsindicatemodulateseukaryoticinvolvingInter-kingdomSignalingQuorumSensingMoleculeModulatesCellMigrationIQGAP1-Cdc42-ARHGEF9-DependentPathway

Similar Articles

Cited By