Macrophage Recruitment and Polarization During Collateral Vessel Remodeling in Murine Adipose Tissue.

Scott A Seaman, Yiqi Cao, Chris A Campbell, Shayn M Peirce
Author Information
  1. Scott A Seaman: Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
  2. Yiqi Cao: Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
  3. Chris A Campbell: Department of Plastic Surgery, University of Virginia, Charlottesville, Virginia, USA.
  4. Shayn M Peirce: Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.

Abstract

OBJECTIVE: During autologous flap transplantation for reconstructive surgeries, plastic surgeons use a surgical pre-treatment strategy called "flap delay," which entails ligating a feeding artery into an adipose tissue flap 10-14 days prior to transfer. It is believed that this blood flow alteration leads to vascular remodeling in the flap, resulting in better flap survival following transfer; however, the structural changes in the microvascular network are poorly understood. Here, we evaluate microvascular adaptations within adipose tissue in a murine model of flap delay.
METHODS AND RESULTS: We used a murine flap delay model in which we ligated an artery supplying the inguinal fat pad. Although the extent of angiogenesis appeared minimal, significant diameter expansion of pre-existing collateral arterioles was observed. There was a 5-fold increase in recruitment of CX3CR1(+) monocytes to ligated tissue, a threefold increase in CD68(+) /CD206(+) macrophages in ligated tissue, a 40% increase in collateral vessel diameters supplying ligated tissue, and a 6-fold increase in the number of proliferating cells in ligated tissue.
CONCLUSIONS: Our study describes microvascular adaptations in adipose in response to altered blood flow and underscores the importance of macrophages. Our data supports the development of therapies that target macrophages in order to enhance vascular remodeling in flaps.

Keywords

References

  1. Microcirculation. 2010 Jul;17(5):333-47 [PMID: 20618691]
  2. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):2012-22 [PMID: 24969773]
  3. Thromb Haemost. 1999 Sep;82 Suppl 1:44-52 [PMID: 10695485]
  4. Mol Cell Biol. 2000 Jun;20(11):4106-14 [PMID: 10805752]
  5. Cardiovasc Res. 2001 Feb 16;49(3):543-53 [PMID: 11166267]
  6. Am J Physiol Heart Circ Physiol. 2002 Dec;283(6):H2411-9 [PMID: 12388258]
  7. Microcirculation. 2003 Jan;10(1):83-97 [PMID: 12610665]
  8. J Reconstr Microsurg. 2003 Apr;19(3):187-94 [PMID: 12806581]
  9. Arterioscler Thromb Vasc Biol. 2003 Jul 1;23(7):1143-51 [PMID: 12676799]
  10. Plast Reconstr Surg. 2004 Jan;113(1):284-93 [PMID: 14707648]
  11. Circ Res. 2004 Mar 19;94(5):671-7 [PMID: 14963007]
  12. Ann Surg. 2004 Jun;239(6):866-73; discussion 873-5 [PMID: 15166966]
  13. Nat Med. 2004 Aug;10(8):858-64 [PMID: 15235597]
  14. Circ Res. 2004 Sep 3;95(5):449-58 [PMID: 15345667]
  15. Plast Reconstr Surg. 1968 Jul;42(1):43-50 [PMID: 4875691]
  16. Virchows Arch A Pathol Anat Histol. 1976 Jun 22;370(3):193-205 [PMID: 821235]
  17. Plast Reconstr Surg. 1981 Feb;67(2):177-87 [PMID: 7465666]
  18. Plast Reconstr Surg. 1983 Dec;72(6):766-77 [PMID: 6647600]
  19. Am J Physiol. 1990 Apr;258(4 Pt 2):H1103-11 [PMID: 2330998]
  20. J Exp Med. 1992 Jul 1;176(1):287-92 [PMID: 1613462]
  21. Plast Reconstr Surg. 1994 Dec;94(7):1018-24; discussion 1025-6 [PMID: 7972455]
  22. Plast Reconstr Surg. 1997 Jan;99(1):194-205 [PMID: 8982203]
  23. J Clin Invest. 1998 Jan 1;101(1):40-50 [PMID: 9421464]
  24. Microcirculation. 2005 Mar;12(2):151-60 [PMID: 15824037]
  25. Clin Exp Immunol. 2005 Dec;142(3):481-9 [PMID: 16297160]
  26. Angiogenesis. 2005;8(3):263-71 [PMID: 16328159]
  27. J Leukoc Biol. 2006 May;79(5):971-6 [PMID: 16641139]
  28. J Vasc Surg. 2007 Jun;45 Suppl A:A48-56 [PMID: 17544024]
  29. Microcirculation. 2008 Jul;15(5):389-404 [PMID: 18574742]
  30. Basic Res Cardiol. 2009 Jan;104(1):5-21 [PMID: 19101749]
  31. Reprod Sci. 2009 Feb;16(2):147-51 [PMID: 19001552]
  32. Microcirculation. 2010 Jan;17(1):3-20 [PMID: 20141596]
  33. Curr Opin Investig Drugs. 2010 Mar;11(3):298-308 [PMID: 20178043]
  34. Acta Histochem. 2010 May;112(3):203-14 [PMID: 19481785]
  35. Adv Drug Deliv Rev. 2010 Jun 15;62(7-8):798-813 [PMID: 20394786]
  36. Am J Clin Nutr. 2010 Dec;92(6):1369-77 [PMID: 20962155]
  37. Plast Reconstr Surg. 2010 Dec;126(6):1911-23 [PMID: 21124131]
  38. Circulation. 2011 Jan 18;123(2):186-94 [PMID: 21200001]
  39. Nat Rev Immunol. 2011 Feb;11(2):85-97 [PMID: 21252989]
  40. PLoS One. 2011;6(6):e20807 [PMID: 21694777]
  41. Nat Rev Immunol. 2011 Nov;11(11):723-37 [PMID: 21997792]
  42. Diabetes Metab Res Rev. 2012 Feb;28 Suppl 1:27-9 [PMID: 22271719]
  43. Blood. 2012 Jul 19;120(3):613-25 [PMID: 22577176]
  44. Microcirculation. 2012 Oct;19(7):610-8 [PMID: 22587333]
  45. Stroke. 2012 Nov;43(11):3052-62 [PMID: 22923448]
  46. Microcirculation. 2012 Nov;19(8):676-95 [PMID: 22734666]
  47. Physiol Rev. 2013 Jan;93(1):1-21 [PMID: 23303904]
  48. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12 [PMID: 23401516]
  49. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13785-90 [PMID: 23918395]
  50. Microcirculation. 2010 Nov;17(8):583-99 [PMID: 21044213]

Grants

  1. R01 EY022063/NEI NIH HHS
  2. R01 HL082838/NHLBI NIH HHS
  3. EY022063/NEI NIH HHS
  4. HL082838/NHLBI NIH HHS
  5. T32 GM008715/NIGMS NIH HHS
  6. T32GM008715/NIGMS NIH HHS

MeSH Term

Adipose Tissue
Animals
Autografts
Graft Survival
Macrophages
Mice
Microcirculation
Monocytes
Surgical Flaps

Word Cloud

Created with Highcharts 10.0.0flaptissueligatedadiposeincreasedelaymicrovascularcollateral+macrophagesarterytransferbloodflowvascularremodelingadaptationsmurinemodelsupplyingvesselOBJECTIVE:autologoustransplantationreconstructivesurgeriesplasticsurgeonsusesurgicalpre-treatmentstrategycalled"flap"entailsligatingfeeding10-14dayspriorbelievedalterationleadsresultingbettersurvivalfollowinghoweverstructuralchangesnetworkpoorlyunderstoodevaluatewithinMETHODSANDRESULTS:usedinguinalfatpadAlthoughextentangiogenesisappearedminimalsignificantdiameterexpansionpre-existingarteriolesobserved5-foldrecruitmentCX3CR1monocytesthreefoldCD68/CD20640%diameters6-foldnumberproliferatingcellsCONCLUSIONS:studydescribesresponsealteredunderscoresimportancedatasupportsdevelopmenttherapiestargetorderenhanceflapsMacrophageRecruitmentPolarizationCollateralVesselRemodelingMurineAdiposeTissuearteriogenesismacrophage

Similar Articles

Cited By