Deterministic Assembly of Complex Bacterial Communities in Guts of Germ-Free Cockroaches.

Aram Mikaelyan, Claire L Thompson, Markus J Hofer, Andreas Brune
Author Information
  1. Aram Mikaelyan: Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
  2. Claire L Thompson: Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
  3. Markus J Hofer: School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia.
  4. Andreas Brune: Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany brune@mpi-marburg.mpg.de.

Abstract

The gut microbiota of termites plays important roles in the symbiotic digestion of lignocellulose. However, the factors shaping the microbial community structure remain poorly understood. Because termites cannot be raised under axenic conditions, we established the closely related cockroach Shelfordella lateralis as a germ-free model to study microbial community assembly and host-microbe interactions. In this study, we determined the composition of the bacterial assemblages in cockroaches inoculated with the gut microbiota of termites and mice using pyrosequencing analysis of their 16S rRNA genes. Although the composition of the xenobiotic communities was influenced by the lineages present in the foreign inocula, their structure resembled that of conventional cockroaches. Bacterial taxa abundant in conventional cockroaches but rare in the foreign inocula, such as Dysgonomonas and Parabacteroides spp., were selectively enriched in the xenobiotic communities. Donor-specific taxa, such as endomicrobia or spirochete lineages restricted to the gut microbiota of termites, however, either were unable to colonize germ-free cockroaches or formed only small populations. The exposure of xenobiotic cockroaches to conventional adults restored their normal microbiota, which indicated that autochthonous lineages outcompete foreign ones. Our results provide experimental proof that the assembly of a complex gut microbiota in insects is deterministic.

References

  1. Mol Ecol. 2015 Oct;24(20):5284-95 [PMID: 26348261]
  2. Appl Environ Microbiol. 1995 Jul;61(7):2681-7 [PMID: 16535076]
  3. Appl Environ Microbiol. 2012 Jul;78(13):4691-701 [PMID: 22544239]
  4. ISME J. 2013 Oct;7(10):1922-32 [PMID: 23719154]
  5. Appl Environ Microbiol. 2012 Apr;78(8):2758-67 [PMID: 22327579]
  6. Appl Environ Microbiol. 2016 Feb;82(4):1080-9 [PMID: 26637604]
  7. Syst Appl Microbiol. 2015 Oct;38(7):472-82 [PMID: 26283320]
  8. Mol Biol Evol. 2003 Jun;20(6):907-13 [PMID: 12716997]
  9. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  10. Int J Syst Evol Microbiol. 2015 Feb;65(Pt 2):681-5 [PMID: 25428419]
  11. Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:2189-95 [PMID: 11155996]
  12. FEMS Microbiol Ecol. 2015 Feb;91(2):1-14 [PMID: 25764554]
  13. PLoS One. 2013;8(8):e70749 [PMID: 23967097]
  14. FEMS Microbiol Ecol. 2007 Jun;60(3):467-76 [PMID: 17391329]
  15. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  16. PLoS One. 2011;6(12):e27310 [PMID: 22194782]
  17. Cell. 2014 Oct 9;159(2):253-66 [PMID: 25284151]
  18. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  19. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  20. Nucleic Acids Res. 2004;32(4):1363-71 [PMID: 14985472]
  21. Mol Biol Evol. 2015 Feb;32(2):406-21 [PMID: 25389205]
  22. PLoS One. 2014;9(1):e85861 [PMID: 24454939]
  23. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11509-14 [PMID: 25053814]
  24. Vet Immunol Immunopathol. 2012 Oct 15;149(3-4):216-24 [PMID: 22868203]
  25. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  26. Annu Rev Microbiol. 2015;69:145-66 [PMID: 26195303]
  27. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  28. Mol Ecol. 2011 Feb;20(3):619-28 [PMID: 21175905]
  29. Int J Syst Evol Microbiol. 2014 Sep;64(Pt 9):2956-61 [PMID: 24899656]
  30. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  31. J Insect Physiol. 2012 Oct;58(10):1368-75 [PMID: 22858833]
  32. Mol Phylogenet Evol. 2007 Sep;44(3):953-67 [PMID: 17625919]
  33. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  34. PLoS Genet. 2011 Sep;7(9):e1002272 [PMID: 21966276]
  35. Appl Environ Microbiol. 2012 Dec;78(23):8245-53 [PMID: 23001661]
  36. Appl Environ Microbiol. 2007 Mar;73(5):1576-85 [PMID: 17220268]
  37. Appl Environ Microbiol. 2005 Mar;71(3):1473-9 [PMID: 15746350]

MeSH Term

Animals
Cluster Analysis
Cockroaches
DNA, Bacterial
DNA, Ribosomal
Gastrointestinal Microbiome
Germ-Free Life
Isoptera
Mice
Molecular Sequence Data
Phylogeny
RNA, Ribosomal, 16S
Sequence Analysis, DNA
Symbiosis

Chemicals

DNA, Bacterial
DNA, Ribosomal
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0microbiotacockroachesguttermitesxenobioticlineagesforeignconventionalmicrobialcommunitystructuregerm-freestudyassemblycompositioncommunitiesinoculaBacterialtaxaplaysimportantrolessymbioticdigestionlignocelluloseHoweverfactorsshapingremainpoorlyunderstoodraisedaxenicconditionsestablishedcloselyrelatedcockroachShelfordellalateralismodelhost-microbeinteractionsdeterminedbacterialassemblagesinoculatedmiceusingpyrosequencinganalysis16SrRNAgenesAlthoughinfluencedpresentresembledabundantrareDysgonomonasParabacteroidessppselectivelyenrichedDonor-specificendomicrobiaspirocheterestrictedhowevereitherunablecolonizeformedsmallpopulationsexposureadultsrestorednormalindicatedautochthonousoutcompeteonesresultsprovideexperimentalproofcomplexinsectsdeterministicDeterministicAssemblyComplexCommunitiesGutsGerm-FreeCockroaches

Similar Articles

Cited By