Ingestional and transgenerational effects of the Fukushima nuclear accident on the pale grass blue butterfly.

Wataru Taira, Atsuki Hiyama, Chiyo Nohara, Ko Sakauchi, Joji M Otaki
Author Information
  1. Wataru Taira: The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
  2. Atsuki Hiyama: The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
  3. Chiyo Nohara: The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
  4. Ko Sakauchi: The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
  5. Joji M Otaki: The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan otaki@sci.u-ryukyu.ac.jp.

Abstract

One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011-2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years.

Keywords

References

  1. Anal Chem. 2014 Sep 2;86(17):8521-5 [PMID: 25084242]
  2. Heredity (Edinb). 2013 Mar;110(3):207-12 [PMID: 23211788]
  3. Sci Rep. 2015;5:9432 [PMID: 25838205]
  4. Br J Cancer. 2011 Jan 4;104(1):181-7 [PMID: 21102590]
  5. BMC Evol Biol. 2010;10:252 [PMID: 20718993]
  6. Radiat Environ Biophys. 1998 Apr;37(1):53-5 [PMID: 9615344]
  7. Int J Environ Res Public Health. 2009 Dec;6(12):3105-14 [PMID: 20049249]
  8. Sci Rep. 2014;4:5793 [PMID: 25060710]
  9. Mutat Res. 2000 Nov 6;454(1-2):89-109 [PMID: 11035163]
  10. Nature. 1997 Oct 9;389(6651):593-6 [PMID: 9335497]
  11. Annu Rev Entomol. 1975;20:167-82 [PMID: 1090237]
  12. Trends Endocrinol Metab. 2014 Nov;25(11):558-66 [PMID: 25153840]
  13. Nature. 1996 Jul 25;382(6589):352-3 [PMID: 8684463]
  14. BMC Biol. 2013;11:92 [PMID: 23987799]
  15. Sci Rep. 2012;2:570 [PMID: 22880161]
  16. Lancet. 1988 Sep 10;2(8611):630 [PMID: 2901007]
  17. Environ Pollut. 2012 Apr;163:243-7 [PMID: 22266366]
  18. PLoS One. 2014;9(6):e100296 [PMID: 24963711]
  19. BMC Evol Biol. 2010;10:382 [PMID: 21143917]
  20. Nat Rev Mol Cell Biol. 2011 Mar;12(3):198-202 [PMID: 21304553]
  21. J Insect Physiol. 2008 Jul;54(7):1099-112 [PMID: 18638480]
  22. Nature. 2007 Jun 7;447(7145):725-9 [PMID: 17554309]
  23. Int J Radiat Biol. 1991 Jan;59(1):31-40 [PMID: 1671073]
  24. Q Rev Biol. 2003 Dec;78(4):399-417 [PMID: 14737825]
  25. BMC Evol Biol. 2015;15:15 [PMID: 25888050]
  26. Curr Opin Clin Nutr Metab Care. 2014 Jul;17(4):324-8 [PMID: 24848532]
  27. Heredity (Edinb). 2008 Dec;101(6):483-9 [PMID: 18941471]
  28. Health Phys. 2013 Aug;105(2):192-200 [PMID: 23799504]
  29. J Environ Radioact. 2015 Jan;139:234-9 [PMID: 24445055]
  30. J Hered. 2014 Sep-Oct;105(5):710-22 [PMID: 25124816]
  31. Environ Pollut. 2012 May;164:36-9 [PMID: 22321986]
  32. Cold Spring Harb Symp Quant Biol. 1997;62:1-11 [PMID: 9598330]
  33. Sci Rep. 2015;5:12351 [PMID: 26197998]
  34. Lancet. 1989 Nov 4;2(8671):1081-3 [PMID: 2572806]
  35. PLoS One. 2013;8(7):e66939 [PMID: 23935827]
  36. Front Genet. 2012 Feb 06;3:15 [PMID: 22363341]
  37. Zoolog Sci. 2007 Aug;24(8):811-9 [PMID: 18217488]
  38. Sci Rep. 2013;3:2554 [PMID: 23989894]
  39. Chem Biodivers. 2008 Apr;5(4):499-539 [PMID: 18425729]
  40. Radiat Environ Biophys. 2006 Sep;45(3):167-77 [PMID: 16862442]
  41. J Natl Cancer Inst. 2006 Jul 5;98(13):897-903 [PMID: 16818853]
  42. Curr Opin Genet Dev. 2014 Jun;26:33-40 [PMID: 25005743]
  43. J Expo Sci Environ Epidemiol. 2015 May;25(3):334-42 [PMID: 24064533]
  44. Ecol Evol. 2014 Feb;4(4):355-69 [PMID: 24634721]
  45. Biol Rev Camb Philos Soc. 2013 Feb;88(1):226-54 [PMID: 23136873]
  46. Nature. 2007 Jun 7;447(7145):686-90 [PMID: 17554302]
  47. Radiat Res. 2003 May;159(5):581-96 [PMID: 12710869]
  48. Trends Ecol Evol. 2006 Apr;21(4):200-7 [PMID: 16701086]
  49. Sci Rep. 2014;4:4946 [PMID: 24844938]
  50. Mutat Res. 1975 Mar;27(3):347-55 [PMID: 1117876]
  51. Sci Rep. 2015;5:9405 [PMID: 25802117]
  52. Nature. 1997 May 15;387(6630):246 [PMID: 9153387]
  53. Nature. 2013 Jul 18;499(7458):265-6 [PMID: 23868240]
  54. J Radiat Res. 2014 May;55(3):476-83 [PMID: 24504671]
  55. Nature. 2014 May 22;509(7501):439-46 [PMID: 24848057]
  56. J Hered. 2014 Sep-Oct;105(5):704-9 [PMID: 25124815]
  57. J Environ Radioact. 2013 Jul;121:12-21 [PMID: 22336569]
  58. Ann Entomol Soc Am. 1969 Nov;62(6):1340-7 [PMID: 5374171]
  59. BMC Evol Biol. 2014;14:193 [PMID: 25330067]
  60. Environ Sci Technol. 2014 May 6;48(9):4649-63 [PMID: 24754713]
  61. BMC Evol Biol. 2013;13:168 [PMID: 23937355]
  62. Nat Neurosci. 2014 Jan;17(1):89-96 [PMID: 24292232]
  63. Oncogene. 2003 Oct 13;22(45):7087-93 [PMID: 14557814]
  64. Sci Rep. 2013;3:2379 [PMID: 23917124]
  65. Environ Int. 2008 Aug;34(6):880-97 [PMID: 18234336]
  66. Mutat Res. 2012 Oct 9;748(1-2):36-41 [PMID: 22796420]
  67. Int J Hematol. 2014 Oct;100(4):326-34 [PMID: 25082353]
  68. J Evol Biol. 2012 Jun;25(6):1149-62 [PMID: 22507690]
  69. J Hered. 2014 Sep-Oct;105(5):723-38 [PMID: 25124817]

MeSH Term

Animals
Butterflies
Eating
Epigenomics
Fukushima Nuclear Accident
Genomic Instability
Humans
Radiation Dosage

Word Cloud

Created with Highcharts 10.0.0effectsradiationcontaminatedtransgenerationalexposurebutterflyleavesmortalityratesFukushimapalegrassbluelowindividualshighimportantpublichumansingestionhumanfindingsingestionaldosesmorphologicallysensitivityadaptiveevolutionresistanceabnormalityfunctionmodelnormalfed3yearsnuclearaccidenteffectOneconcernJapanpotentialhealthanimalsliveTohoku-KantodistrictsassociatedfoodsartificialradionuclidescollapsedDai-ichiNuclearPowerPlantAdditionallyheritablealsoconcernscauselong-termchangesanimalpopulationsconciselyreviewimplicationsrelatedZizeeriamahacoexistslarvalfoundareashabitationevenresultedmorphologicalabnormalitiesdeathwhereasaffectedleastvariableservesbasisdistributionfitswellWeibullpoweroffspringgeneratedconsumedexhibitedimportantlyrestorednon-contaminatedfieldmonitoring2011-2013indicatedpeakedprimarilyfall2011decreasedafterwardslevelsindicateimpactsearlytransgenerationallyaccumulatedspecificperiodhoweverpopulationregainednormalityrelativelyquickly∼15generationswithinIngestionalinternalnaturalselection

Similar Articles

Cited By