Addressing biological uncertainties in engineering gene circuits.

Carolyn Zhang, Ryan Tsoi, Lingchong You
Author Information
  1. Carolyn Zhang: Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.

Abstract

Synthetic biology has grown tremendously over the past fifteen years. It represents a new strategy to develop biological understanding and holds great promise for diverse practical applications. Engineering of a gene circuit typically involves computational design of the circuit, selection of circuit components, and test and optimization of circuit functions. A fundamental challenge in this process is the predictable control of circuit function due to multiple layers of biological uncertainties. These uncertainties can arise from different sources. We categorize these uncertainties into incomplete quantification of parts, interactions between heterologous components and the host, or stochastic dynamics of chemical reactions and outline potential design strategies to minimize or exploit them.

References

  1. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2984-9 [PMID: 25713377]
  2. J Am Chem Soc. 2008 Apr 16;130(15):5267-71 [PMID: 18355019]
  3. Mol Cell. 2011 Apr 22;42(2):250-60 [PMID: 21458342]
  4. Nucleic Acids Res. 2011 Feb;39(3):1131-41 [PMID: 20843779]
  5. Mol Cell. 2014 May 22;54(4):698-710 [PMID: 24837679]
  6. Nat Genet. 2002 May;31(1):69-73 [PMID: 11967532]
  7. Nat Biotechnol. 2014 Dec;32(12):1276-81 [PMID: 25402616]
  8. Nature. 2008 Nov 27;456(7221):516-9 [PMID: 18971928]
  9. Biochim Biophys Acta. 2009 Feb;1788(2):567-74 [PMID: 19027713]
  10. Nature. 2005 Nov 24;438(7067):443-8 [PMID: 16306982]
  11. Nat Biotechnol. 2007 Sep;25(9):1051-6 [PMID: 17721510]
  12. Biophys J. 2014 Sep 2;107(5):1247-55 [PMID: 25185560]
  13. Mol Biosyst. 2013 Jun;9(6):1282-5 [PMID: 23511899]
  14. Nat Methods. 2015 May;12(5):415-8 [PMID: 25849635]
  15. ACS Synth Biol. 2014 Dec 19;3(12):880-91 [PMID: 25360681]
  16. Mol Syst Biol. 2014;10:747 [PMID: 25149558]
  17. Nucleic Acids Res. 2015 Jan;43(2):1297-303 [PMID: 25527740]
  18. Science. 2010 Nov 19;330(6007):1099-102 [PMID: 21097934]
  19. Cell. 2014 Nov 6;159(4):718-20 [PMID: 25417149]
  20. Nat Methods. 2014 Dec;11(12):1261-6 [PMID: 25344638]
  21. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):E3350-7 [PMID: 23150568]
  22. Nature. 2015 Jul 16;523(7560):357-60 [PMID: 26040722]
  23. Ciba Found Symp. 1994;186:91-101; discussion 101-6 [PMID: 7768160]
  24. Nature. 2004 Jul 1;430(6995):81-5 [PMID: 15229601]
  25. Mol Syst Biol. 2009;5:318 [PMID: 19888213]
  26. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):155-60 [PMID: 22190493]
  27. Curr Opin Biotechnol. 2010 Dec;21(6):734-43 [PMID: 20869867]
  28. Biotechnol Bioeng. 1998 Apr 20-May 5;58(2-3):191-5 [PMID: 10191389]
  29. Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17669-74 [PMID: 15591347]
  30. Nature. 2010 Sep 9;467(7312):167-73 [PMID: 20829787]
  31. Science. 2010 Feb 26;327(5969):1142-5 [PMID: 20185727]
  32. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800 [PMID: 12237400]
  33. Science. 2010 Jul 16;329(5989):309-13 [PMID: 20647463]
  34. Science. 2004 Jun 18;304(5678):1811-4 [PMID: 15166317]
  35. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10610-5 [PMID: 23754391]
  36. Appl Environ Microbiol. 2007 Sep;73(18):5711-5 [PMID: 17644634]
  37. EMBO J. 2001 May 15;20(10):2528-35 [PMID: 11350942]
  38. Mol Cell. 2011 Feb 4;41(3):275-85 [PMID: 21292160]
  39. Biotechniques. 2008 Mar;44(3):387-91 [PMID: 18361792]
  40. J Biol Eng. 2010 Nov 01;4:12 [PMID: 21040586]
  41. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E1038-47 [PMID: 25695966]
  42. PLoS Comput Biol. 2008;4(8):e1000167 [PMID: 18769706]
  43. Biotechnol Bioeng. 2001 May 5;73(3):238-45 [PMID: 11257606]
  44. Nature. 2006 Feb 2;439(7076):608-11 [PMID: 16452980]
  45. Appl Microbiol Biotechnol. 2012 Oct;96(1):197-209 [PMID: 22526794]
  46. Biotechnol Prog. 1997 Nov-Dec;13(6):733-40 [PMID: 9413131]
  47. Chem Biol. 2014 Dec 18;21(12):1629-38 [PMID: 25455858]
  48. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12678-83 [PMID: 16123130]
  49. Nat Biotechnol. 2009 May;27(5):465-71 [PMID: 19377462]
  50. J Mol Biol. 2016 Feb 27;428(5 Pt B):945-62 [PMID: 26334368]
  51. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  52. Nat Chem Biol. 2009 Nov;5(11):797-807 [PMID: 19841629]
  53. Genome Res. 2012 Apr;22(4):802-9 [PMID: 22300632]
  54. Nat Commun. 2015;6:7810 [PMID: 26183606]
  55. Rep Prog Phys. 2014;77(2):026601 [PMID: 24444693]
  56. PLoS One. 2010;5(7):e11909 [PMID: 20689598]
  57. Biochem Biophys Res Commun. 2007 Nov 9;363(1):12-7 [PMID: 17850764]
  58. Chaos. 2013 Jun;23(2):025112 [PMID: 23822510]
  59. J Biotechnol. 2007 Jul 15;130(4):329-45 [PMID: 17602777]
  60. Nature. 2010 Sep 9;467(7312):174-8 [PMID: 20829788]
  61. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  62. Mol Syst Biol. 2013;9:701 [PMID: 24169404]
  63. Mol Syst Biol. 2013;9:702 [PMID: 24169405]
  64. J Bacteriol. 2007 Aug;189(16):5839-49 [PMID: 17400739]
  65. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10809-14 [PMID: 18669661]
  66. Nature. 2011 Jan 13;469(7329):212-5 [PMID: 21150903]
  67. ACS Synth Biol. 2016 Jan 15;5(1):89-98 [PMID: 26436725]
  68. J Clin Invest. 2009 Apr;119(4):964-75 [PMID: 19307726]
  69. Mol Syst Biol. 2014;10:763 [PMID: 25422271]
  70. Science. 2014 Nov 14;346(6211):1256272 [PMID: 25395541]
  71. Mol Cell. 2002 Oct;10(4):895-905 [PMID: 12419232]
  72. Science. 2005 Jul 1;309(5731):137-40 [PMID: 15994559]
  73. Nat Methods. 2015 Nov;12(11):1085-90 [PMID: 26389572]
  74. Biotechnol Bioeng. 2003 Jul 5;83(1):53-64 [PMID: 12740933]
  75. Nat Biotechnol. 2015 Nov;33(11):1159-61 [PMID: 26436575]
  76. Nature. 2006 Jun 8;441(7094):719-23 [PMID: 16760970]
  77. Nat Commun. 2015;6:6989 [PMID: 25988366]
  78. Cell. 2014 Mar 13;156(6):1312-23 [PMID: 24612990]
  79. Mol Syst Biol. 2006;2:2006.0028 [PMID: 16738572]
  80. Science. 2015 Aug 28;349(6251):986-9 [PMID: 26315440]
  81. Phys Rev Lett. 2012 Dec 14;109(24):248104 [PMID: 23368387]
  82. Nature. 2005 Oct 13;437(7061):975-80 [PMID: 16222292]
  83. Cell. 2011 Mar 18;144(6):910-25 [PMID: 21414483]
  84. FEMS Yeast Res. 2013 Feb;13(1):107-16 [PMID: 23107142]
  85. Nature. 2010 Jan 21;463(7279):326-30 [PMID: 20090747]
  86. Nature. 2009 Jan 15;457(7227):309-12 [PMID: 19148099]
  87. Nature. 2012 Nov 8;491(7423):249-53 [PMID: 23041931]
  88. PLoS One. 2014;9(5):e96635 [PMID: 24804975]
  89. Methods. 2013 Mar 15;60(1):81-90 [PMID: 22465795]
  90. Annu Rev Phys Chem. 2007;58:35-55 [PMID: 17037977]
  91. Nat Chem Biol. 2015 Mar;11(3):198-200 [PMID: 25664691]
  92. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W376-83 [PMID: 19465397]
  93. Mol Syst Biol. 2008;4:161 [PMID: 18277378]
  94. Mol Syst Biol. 2011;7:519 [PMID: 21811230]
  95. Nat Biotechnol. 2012 Oct;30(10):1002-6 [PMID: 22983090]
  96. Mol Syst Biol. 2006;2:41 [PMID: 16883354]
  97. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):406-11 [PMID: 25548180]
  98. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19306-11 [PMID: 19052231]
  99. Nat Struct Mol Biol. 2004 Apr;11(4):371-9 [PMID: 15034550]
  100. Nature. 2014 May 15;509(7500):385-8 [PMID: 24805238]
  101. Nature. 2004 Jan 29;427(6973):415-8 [PMID: 14749823]
  102. Mol Syst Biol. 2013;9:670 [PMID: 23736683]
  103. Nat Genet. 2005 Nov;37(11):1281-8 [PMID: 16200065]
  104. Nat Biotechnol. 2013 Nov;31(11):1039-46 [PMID: 24142050]
  105. Biotechnol Prog. 1997 Nov-Dec;13(6):864-8 [PMID: 9413145]
  106. Proteins. 2010 Jul;78(9):2101-13 [PMID: 20455266]
  107. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2075-80 [PMID: 10681449]
  108. Curr Protoc Protein Sci. 2007 Nov;Chapter 5:Unit 5.19 [PMID: 18429327]
  109. Cell. 2014 Nov 6;159(4):940-54 [PMID: 25417167]
  110. Nat Biotechnol. 2014 Dec;32(12):1268-75 [PMID: 25419739]
  111. Phys Biol. 2005 Mar;2(1):36-45 [PMID: 16204855]
  112. Curr Opin Biotechnol. 2009 Aug;20(4):498-503 [PMID: 19720519]
  113. Nature. 2000 Jun 1;405(6786):590-3 [PMID: 10850721]
  114. PLoS One. 2010;5(8):e12314 [PMID: 20865033]
  115. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8889-94 [PMID: 20410460]
  116. Gene. 2002 Sep 4;297(1-2):21-32 [PMID: 12384282]
  117. Genetics. 1992 Jan;130(1):27-36 [PMID: 1732166]
  118. Mol Syst Biol. 2007;3:127 [PMID: 17667949]
  119. Nat Chem Biol. 2009 Nov;5(11):842-8 [PMID: 19801994]
  120. Nat Biotechnol. 2015 Aug;33(8):839-41 [PMID: 26237515]
  121. Nat Methods. 2013 Jul;10(7):659-64 [PMID: 23727987]
  122. ACS Synth Biol. 2015 Jan 16;4(1):8-11 [PMID: 25592034]
  123. Development. 2014 Oct;141(19):3627-36 [PMID: 25249457]
  124. Mol Syst Biol. 2014;10:742 [PMID: 25080493]

Grants

  1. R01 GM110494/NIGMS NIH HHS
  2. R01 GM106107/NIGMS NIH HHS
  3. R01GM110494/NIGMS NIH HHS
  4. R01GM098642/NIGMS NIH HHS
  5. R01 GM098642/NIGMS NIH HHS

MeSH Term

Animals
Escherichia coli
Gene Regulatory Networks
Genetic Engineering
Hot Temperature
Humans
Hydrogen-Ion Concentration
Kinetics
Light
Models, Chemical
Software
Stochastic Processes
Synthetic Biology
Transcription, Genetic

Word Cloud

Created with Highcharts 10.0.0circuituncertaintiesbiologicalgenedesigncomponentsSyntheticbiologygrowntremendouslypastfifteenyearsrepresentsnewstrategydevelopunderstandingholdsgreatpromisediversepracticalapplicationsEngineeringtypicallyinvolvescomputationalselectiontestoptimizationfunctionsfundamentalchallengeprocesspredictablecontrolfunctionduemultiplelayerscanarisedifferentsourcescategorizeincompletequantificationpartsinteractionsheterologoushoststochasticdynamicschemicalreactionsoutlinepotentialstrategiesminimizeexploitAddressingengineeringcircuits

Similar Articles

Cited By