The Essential Complexity of Auditory Receptive Fields.

Ivar L Thorson, Jean Liénard, Stephen V David
Author Information
  1. Ivar L Thorson: Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America.
  2. Jean Liénard: Department of Mathematics, Washington State University, Vancouver, Washington, United States of America.
  3. Stephen V David: Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America.

Abstract

Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models.

References

  1. Network. 2005 Jun-Sep;16(2-3):239-60 [PMID: 16411498]
  2. PLoS One. 2011;6(5):e20046 [PMID: 21625385]
  3. Biol Cybern. 1981;42(2):133-43 [PMID: 7326288]
  4. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1188-93 [PMID: 21199948]
  5. J Neurosci. 2013 Dec 4;33(49):19154-66 [PMID: 24305812]
  6. Nat Rev Neurosci. 2014 Jun;15(6):355-66 [PMID: 24840800]
  7. J Neurophysiol. 1996 Nov;76(5):3503-23 [PMID: 8930289]
  8. Neuron. 2012 Nov 8;76(3):603-15 [PMID: 23141071]
  9. Science. 2009 Apr 3;324(5923):81-5 [PMID: 19342586]
  10. Nat Neurosci. 2003 Nov;6(11):1216-23 [PMID: 14583754]
  11. Neuron. 2008 May 22;58(4):625-38 [PMID: 18498742]
  12. Neuroinformatics. 2011 Mar;9(1):3-19 [PMID: 20882369]
  13. J Neurosci. 2012 Aug 15;32(33):11271-84 [PMID: 22895711]
  14. PLoS One. 2013;8(11):e79138 [PMID: 24236099]
  15. J Opt Soc Am A. 1985 Feb;2(2):284-99 [PMID: 3973762]
  16. Neural Comput. 2004 Dec;16(12):2533-61 [PMID: 15516273]
  17. J Neurophysiol. 2012 Jun;107(12):3296-307 [PMID: 22457454]
  18. PLoS One. 2015;10(2):e0116118 [PMID: 25680187]
  19. Neuron. 2015 Jul 1;87(1):179-92 [PMID: 26074005]
  20. J Vis. 2002;2(1):1-11 [PMID: 12678593]
  21. Science. 1998 May 29;280(5368):1439-43 [PMID: 9603734]
  22. Nat Neurosci. 2014 Jun;17(6):866-75 [PMID: 24836076]
  23. J Neurosci. 1998 Apr 1;18(7):2626-45 [PMID: 9502821]
  24. Network. 2004 May;15(2):91-109 [PMID: 15214701]
  25. J Neurophysiol. 2007 Oct;98(4):2133-43 [PMID: 17671102]
  26. Hear Res. 1993 Apr;66(2):177-201 [PMID: 8509309]
  27. Neuron. 2008 Jun 26;58(6):956-66 [PMID: 18579084]
  28. J Acoust Soc Am. 2005 Aug;118(2):887-906 [PMID: 16158645]
  29. J Comput Neurosci. 2014 Jun;36(3):445-68 [PMID: 24077957]
  30. PLoS Comput Biol. 2013;9(11):e1003356 [PMID: 24278006]
  31. J Neurosci. 2006 May 3;26(18):4970-82 [PMID: 16672673]
  32. Neuron. 2008 Jun 26;58(6):938-55 [PMID: 18579083]
  33. Neural Comput. 2007 Mar;19(3):583-638 [PMID: 17298227]
  34. J Neurophysiol. 2012 May;107(10):2594-603 [PMID: 22323634]
  35. Proc Biol Sci. 2013 Mar 22;280(1755):20122863 [PMID: 23363632]
  36. Network. 2008;19(1):35-67 [PMID: 18300178]
  37. Neuroimage. 2015 Jan 15;105:428-39 [PMID: 25449742]
  38. PLoS Comput Biol. 2013;9(7):e1003143 [PMID: 23874185]
  39. J Neurophysiol. 1987 Dec;58(6):1212-32 [PMID: 3437331]
  40. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2144-9 [PMID: 22308415]
  41. PLoS Comput Biol. 2011 Oct;7(10):e1002219 [PMID: 22046110]
  42. PLoS Comput Biol. 2015 Apr;11(4):e1004141 [PMID: 25831448]
  43. Network. 2001 Aug;12(3):289-316 [PMID: 11563531]
  44. PLoS One. 2012;7(2):e31537 [PMID: 22384036]
  45. PLoS One. 2011;6(1):e16104 [PMID: 21264310]
  46. J Neurophysiol. 2002 Jan;87(1):516-27 [PMID: 11784767]
  47. Neuron. 2014 Apr 16;82(2):486-99 [PMID: 24742467]
  48. Exp Brain Res. 2003 Dec;153(4):573-8 [PMID: 12898102]
  49. Front Neurosci. 2007 Oct 15;1(1):7-18 [PMID: 18982116]
  50. J Neurosci. 2004 Feb 4;24(5):1089-100 [PMID: 14762127]
  51. Network. 2007 Sep;18(3):191-212 [PMID: 17852750]
  52. Cereb Cortex. 2005 Oct;15(10):1637-53 [PMID: 15703254]
  53. Nat Neurosci. 2011 Feb;14(2):208-16 [PMID: 21217763]
  54. J Neurosci. 1999 May 15;19(10):4046-64 [PMID: 10234033]
  55. J Neurosci. 2000 Mar 15;20(6):2315-31 [PMID: 10704507]
  56. Front Hum Neurosci. 2013 Dec 16;7:865 [PMID: 24379774]
  57. J Neurophysiol. 2009 Nov;102(5):2638-56 [PMID: 19675288]
  58. Neuron. 2012 Mar 8;73(5):1002-15 [PMID: 22405209]
  59. J Neurophysiol. 2001 Aug;86(2):1062-6 [PMID: 11495976]
  60. Neural Comput. 1998 May 15;10(4):821-35 [PMID: 9573407]
  61. J Neurophysiol. 1997 Aug;78(2):1045-61 [PMID: 9307134]
  62. Neuroscience. 2012 Jul 12;214:28-35 [PMID: 22531376]
  63. J Neurosci. 2009 Mar 18;29(11):3374-86 [PMID: 19295144]
  64. Annu Rev Neurosci. 2006;29:477-505 [PMID: 16776594]
  65. J Comp Physiol A. 1997 Dec;181(6):685-96 [PMID: 9449827]
  66. Front Neural Circuits. 2013;7:69 [PMID: 23653593]
  67. J Comput Neurosci. 2006 Aug;21(1):5-20 [PMID: 16633939]
  68. J Comput Neurosci. 2000 Jul-Aug;9(1):85-111 [PMID: 10946994]

Grants

  1. R00 DC010439/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Action Potentials
Algorithms
Animals
Auditory Cortex
Auditory Perception
Computer Simulation
Ferrets
Models, Neurological
Nerve Net
Sensory Receptor Cells
Signal Processing, Computer-Assisted

Word Cloud

Created with Highcharts 10.0.0FIRlinearauditorySTRFfiltersfiltermodelpropertiesablesensoryfiniteresponsefewerparametersarchitecturesneuralcortexnaturaloutperformnumbermodelsalsononlinearprovidepowerEncodingneuronscommonlymodeledusingimpulsesysteminstantiatedspectro-temporalreceptivefieldoftenframeworkgeneralizedDespitewidespreadusenumerousformulationspossiblerequiremanypotentiallypermittingefficientaccurateestimatesexplorealternativerecordedsingle-unitactivityawakeferretspresentationsoundstimulicomparedperformance>1000evaluatingabilitypredictresponsesnovelstimulusManyTwobasicconstraintsarchitectureleadimprovedperformance:1factorizationmatrixsmallspectraltemporal2low-dimensionalparameterizationfactorizedbestparameterizedfullprimarysecondarydespiterequiring3010%requiredaccountingnoisedatasamplingSTRFsexplainaverage40%A1variancesimplerpermittedstraightforwardinterpretationtuningshowedgreaterbenefitincorporatingtermsshorttermplasticitytheoreticaladvancesArchitecturesminimizeparametercountmaintainingmaximumpredictiveinsightessentialdegreesfreedomgoverningcorticalfunctionmaximizestatisticalavailablecharacterizingadditionallimitcurrentEssentialComplexityAuditoryReceptiveFields

Similar Articles

Cited By