Antimicrobial Peptides as Anti-Infectives against Staphylococcus epidermidis.

Sangya Agarwal, Garima Sharma, Shweta Dang, Sanjay Gupta, Reema Gabrani
Author Information
  1. Sangya Agarwal: Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.

Abstract

Staphylococcus epidermidis has emerged as the main causative agent for graft-related and nosocomial infections. Rampant use of antibiotics and biofilm formed by the organism results in poor penetration of the drug and further aggravates the antibiotic resistance, emphasizing an urgent need to explore alternative treatment modalities. Antimicrobial peptides (AMPs), produced as effector molecules of the innate immunity of living organisms, have therapeutic potential that can be used to inhibit the growth of microbes. In addition, the susceptibility of a microbe to become resistant to an AMP is relatively low. The AMPs are amphipathic peptides of 12-100 residues, which have broad-spectrum activity against microbes. There are scattered reports of AMPs listed against S. epidermidis and there is an urgent need to systematically study the AMPs. Various natural AMPs as well as synthetic peptides have been investigated against S. epidermidis. These peptides have been shown to inhibit both planktonic culture and S. epidermidis biofilm effectively. The multiple modes of action in killing the organism minimize the chances for the development of resistance. This review focused on various natural and synthetic peptides that demonstrate activity against S. epidermidis.

References

  1. BMC Syst Biol. 2011 May 12;5:68 [PMID: 21569391]
  2. Antimicrob Agents Chemother. 2006 Dec;50(12):3977-83 [PMID: 17000746]
  3. FEMS Microbiol Lett. 2007 Aug;273(2):149-56 [PMID: 17578527]
  4. Curr Opin Pharmacol. 2006 Oct;6(5):468-72 [PMID: 16890021]
  5. Biochem Biophys Res Commun. 1998 Mar 6;244(1):253-7 [PMID: 9514864]
  6. Biotechnol Lett. 2005 Sep;27(18):1337-47 [PMID: 16215847]
  7. Clin Orthop Relat Res. 2005 Aug;(437):48-54 [PMID: 16056025]
  8. Lett Appl Microbiol. 2010 Feb;50(2):211-5 [PMID: 20002576]
  9. Biomaterials. 2007 Mar;28(9):1711-20 [PMID: 17187854]
  10. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8245-50 [PMID: 10890923]
  11. BMC Immunol. 2012 Nov 17;13:61 [PMID: 23157568]
  12. Peptides. 2012 Aug;36(2):308-14 [PMID: 22659161]
  13. Microbes Infect. 2002 Apr;4(4):481-9 [PMID: 11932199]
  14. Biochim Biophys Acta. 2012 Feb;1818(2):194-204 [PMID: 22100601]
  15. J Antimicrob Chemother. 2009 Jan;63(1):136-45 [PMID: 19010828]
  16. J Antimicrob Chemother. 2010 Sep;65(9):1955-8 [PMID: 20615927]
  17. Int J Antimicrob Agents. 2013 Jan;41(1):20-7 [PMID: 23153961]
  18. Biomatter. 2012 Oct-Dec;2(4):176-94 [PMID: 23507884]
  19. Acta Pharmacol Sin. 2012 Mar;33(3):418-25 [PMID: 22231397]
  20. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  21. Med Princ Pract. 2011;20(2):133-6 [PMID: 21252567]
  22. Curr Eye Res. 2005 Jul;30(7):505-15 [PMID: 16020284]
  23. Clin Microbiol Rev. 2006 Jul;19(3):491-511 [PMID: 16847082]
  24. J Infect Dis. 2000 Mar;181(3):1167-71 [PMID: 10720548]
  25. Clin Microbiol Rev. 2002 Apr;15(2):155-66 [PMID: 11932228]
  26. Regul Pept. 2014 Nov;194-195:69-76 [PMID: 25447194]
  27. Antimicrob Agents Chemother. 2000 Dec;44(12):3306-9 [PMID: 11083632]
  28. J Appl Microbiol. 2012 Oct;113(4):723-36 [PMID: 22583565]
  29. Int Microbiol. 2001 Mar;4(1):13-9 [PMID: 11770815]
  30. J Biol Chem. 1994 Apr 8;269(14):10849-55 [PMID: 8144672]
  31. Indian J Med Res. 2012 Sep;136(3):483-90 [PMID: 23041744]
  32. J Leukoc Biol. 1995 Aug;58(2):128-36 [PMID: 7643008]
  33. J Bacteriol. 2004 Feb;186(4):1175-81 [PMID: 14762013]
  34. J Vasc Surg. 2002 Nov;36(5):1027-30 [PMID: 12422090]
  35. Nat Rev Microbiol. 2009 Aug;7(8):555-67 [PMID: 19609257]
  36. Antimicrob Agents Chemother. 2012 Mar;56(3):1539-47 [PMID: 22155816]
  37. Trends Pharmacol Sci. 2002 Nov;23(11):494-6 [PMID: 12413797]
  38. Protein Pept Lett. 2011 Jan;18(1):36-40 [PMID: 20955171]
  39. Antimicrob Agents Chemother. 2007 Aug;51(8):2733-40 [PMID: 17548491]
  40. J Biol Chem. 2005 Jan 14;280(2):984-90 [PMID: 15513914]
  41. Methods. 2007 Aug;42(4):349-57 [PMID: 17560323]
  42. Med Princ Pract. 2010;19(4):281-6 [PMID: 20516704]
  43. J Biol Chem. 2001 Mar 16;276(11):7806-10 [PMID: 11113131]
  44. Plant Signal Behav. 2011 Sep;6(9):1325-32 [PMID: 21847025]
  45. Circulation. 2003 Aug 12;108(6):767-71 [PMID: 12885754]
  46. J Pharm Pharmacol. 2008 Dec;60(12):1551-71 [PMID: 19000360]
  47. Biochemistry. 2010 Feb 23;49(7):1477-85 [PMID: 20082523]
  48. Biofouling. 2014;30(4):435-46 [PMID: 24645694]

MeSH Term

Anti-Bacterial Agents
Antimicrobial Cationic Peptides
Bacteriocins
Biofilms
Drug Design
Humans
Oligopeptides
Peptides, Cyclic
Proteins
Staphylococcus epidermidis

Chemicals

Anti-Bacterial Agents
Antimicrobial Cationic Peptides
Bacteriocins
Jelleine I
Jelleine II
Jelleine III
Oligopeptides
Peptides, Cyclic
Proteins
buforin II
epidermicin NI01, Staphylococcus epidermidis
ranalexin

Word Cloud

Created with Highcharts 10.0.0epidermidispeptidesAMPsSStaphylococcusbiofilmorganismresistanceurgentneedAntimicrobialinhibitmicrobesactivitynaturalsyntheticemergedmaincausativeagentgraft-relatednosocomialinfectionsRampantuseantibioticsformedresultspoorpenetrationdrugaggravatesantibioticemphasizingexplorealternativetreatmentmodalitiesproducedeffectormoleculesinnateimmunitylivingorganismstherapeuticpotentialcanusedgrowthadditionsusceptibilitymicrobebecomeresistantAMPrelativelylowamphipathic12-100residuesbroad-spectrumscatteredreportslistedsystematicallystudyVariouswellinvestigatedshownplanktoniccultureeffectivelymultiplemodesactionkillingminimizechancesdevelopmentreviewfocusedvariousdemonstratePeptidesAnti-Infectives

Similar Articles

Cited By (9)